Classical

MECHANICS

(SR ED T @SN




CLASSICAL MECHANICS

THIRD EDITION

Herbert Goldstein
Columbia University

Charles Poole
University of South Carolina

John Safko

University of South Carolina

A
\A4

Addison
Wesley

—TTT T

San Francisco Bostor New York
Capetown Hong Kong London Madnd Mexico City
Montreal Mumich Pans  Singapore Sydney Tokyo Toronto




Contents

1 W Survey of the Elementary Principles 1

1.1

Mechanics of a Particle 1

1.2 Mechanics of a System of Particles 5
1.3 Constraints 12
1.4  D’Alembert’s Principle and Lagrange’s Equations 16
1.5  Velocity-Dependent Potentials and the Dissipation Function 22
1.6  Simple Applications of the Lagrangian Formulation 24
2 W Variational Principles and Lagrange’s Equations 34
2.1  Hamilton’s Principle 34
2.2 Some Techniques of the Calculus of Variations 36
2.3 Derivation of Lagrange’s Equations from Hamilton’s Principle 44
2.4  Extension of Hamilton’s Principle to Nonholonomic Systems 45
2.5  Advantages of a Variational Principle Formulation 51
2.6  Conservation Theorems and Symmetry Properties 54
2.7  Energy Function and the Conservation of Energy 60
3 H The Central Force Problem 70
3.1  Reduction to the Equivalent One-Body Problem 70
3.2 The Equations of Motion and First Integrals 72
3.3  The Equivalent One-Dimensional Problem, and
Classification of Orbits 76
3.4  The Virial Theorem &3
3.5 The Differential Equation for the Orbit, and Integrable
Power-Law Potentials 86
3.6  Conditions for Closed Orbits (Bertrand’s Theorem) 89
3.7  The Kepler Problem: Inverse-Square Law of Force 92
3.8 The Motion in Time in the Kepler Problem 98
3.9 The Laplace—Runge-Lenz Vector 102
3.10 Scattering in a Central Force Field 106
3.11 Transformation of the Scattering Problem to Laboratory
Coordinates 114
3.12 The Three-Body Problem 121



vi Conterts

4 M The Kinematics of Rigid Body Motion 134
4.1  The Independent Coordinates of a Rigid Body 134
4.2  Orthogonal Transtormations 139
4.3  Formal Properties of the Transformation Matrix 144
4.4  The Euler Angles 150
4.5 The Cayley-Klein Parameters and Related Quantities 154
4.6  Euler’s Theorem on the Motion of a Rigid Body 155
4.7  Finite Rotations 161
4.8 Infinitesimal Rotations 163
4.9 Rate of Change of a Vector 171

4,10 The Coriolis Effect 174

5 H The Rigid Body Equations of Motion 184

5.1

Angular Momentum and Kinetic Energy ot Motion
about a Point 184

52 Tensors 188
5.3  The Inertia Tensor and the Moment of Inertia 191
5.4  The Eigenvalues of the Inertia Tensor and the Principal
Axis Transformation 195
5.5  Solving Rigid Body Problems and the Euler Equations of
Motion 198
5.6  Torque-free Motion of a Rigid Body 200
5.7 The Heavy Symmetrical Top with One Point Fixed 208
5.8  Precession of the Equinoxes and of Satellite Orbits 223
5.9  Piccession of Sysiems of Charges in a Magnetic Field 230
6 W Oscillations 238
6.1  Formulation of the Problem 238
6.2  The Eigenvalue Equation and the Principal Axis Transformation 241
6.3  Frequencies of Free Vibration, and Normal Coordinates 250
6.4  Free Vibrations of a Linear Triatomic Molecule 253
6.5 Forced Vibrations and the Effect of Dissipative Forces 259
6.6 Beyond Small Oscillations: The Damped Driven Pendulum and the

Josephson Junction 265

7 H The Classical Mechanics of the

Special Theory of Relativity 276
7.1  Basic Postulates of the Special Theory 277

7.2  Lorentz Transformations 280

7.3  Velocity Addition and Thomas Precession 282

7.4  Vectors and the Metric Tensor 286



Contents Vil

7.5 1-Forms and Tensors 289
7.6  Forces in the Special Theory; Electromagnetism 297
7.7  Relativistic Kinematics of Collisions and Many-Particle
Systems 300
7.8  Relativistic Angular Momentum 309
7.9  The Lagrangian Formulation of Relativistic Mechanics 312
7.10 Covariant Lagrangian Formulations 318
7.11 Introduction to the General Theory of Relativity 324
8 B The Hamilton Equations of Motion 334
8.1  Legendre Transformations and the Hamilton Equations
of Motion 334
8.2  Cyclic Coordinates and Conservation Theorems 343
8.3  Routh’s Proccdurc 347
8.4  The Hamiltonian Formulation of Relativistic Mechanics 349
8.5  Derivation of Hamilton’s Equations from a
Variational Principle 353
8.6  The Principle of Least Action 356
9 H Canonical Transformations 368
9.1  The Equations of Canonical Transformation 368
9.2  Examples of Canonical Transformations 375
9.3  The Harmonic Oscillator 377
9.4  The Symplectic Approach to Canonical Transformations 381
9.5  Poisson Brackets and Other Canonical Invariants 388
9.6  Equations of Motion, Infinitesimal Canonical Transformations, and
Conscrvation Theorems in the Poisson Bracket Formulation 396
9.7  The Angular Momentum Poisson Bracket Relations 408
9.8  Symmetry Groups of Mechanical Systems 412
9.9 Liouville’s Theorem 419

10 B

Hamilton-Jacobi Theory and Action-Angle Variables 430

10.1

10.2

10.3

104
10.5
10.6

The Hamilton-Jacobi Equation for Hamilton’s Principal
Function 430

The Harmonic Oscillator Problem as an Example of the
Hamilton—Jacobi Method 434

The Hamilton-Jacobi Equation for Hamilton’s Characteristic
Function 440

Separation of Variables in the Hamilton-Jacobi Equation 444
Ignorable Coordinates and the Kepler Problem 445

Action-angle Variables in Systems of One Degree of Freedom 452



Contents

10.7 Action-Angle Variables for Completely Separable Systems 457

10.8 The Kepler Problem in Action-angle Variables

11 M Classical Chaos
[1.1 Periodic Motion 484

466
483

11.2 Perturbations and the Kolmogorov—Amold—Moser Theorem 487

11.3  Attractors 489

11.4 Chaotic Trajectories and Liapunov Exponents 491

11.5 Poincaré Maps 494
11.6 Hénon-Heiles Hamiltonian 496

11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric

Resonance 505
11.8 The Logistic Equation 509
11.9 Fractals and Dimcensionality 516

12 W Canonical Perturbation Theory
12.1 Introduction 526
12.2 Time-dependent Perturbation Theory 527

526

12.3 Tllustrations of Time-dependent Perturbation Theory 533

12.4 Time-independent Perturbation Theory 541
12.5 Adiabatic Invariants 549

13 W Introduction to the Lagrangian and Hamiltonian
Formulations for Continuous Systems and Fields 558
13.1 The Transition from a Discrete fo a Continuous System 558
13.2 The Lagrangian Formulation for Continuous Systems 561
133 The Stress-energy Tensor and Conservation Theorems 566

13.4 Hamiltonian Formulation 572

13.5 Relativistic Field Theory 577

13.6 Examples of Relativistic Field Theories 583
13.7 Noether's Theorem 589

Appendix A B Euler Angles in Alternate Conventions
and Cayley—Klein Parameters

Appendix B B Groups and Algebras

Selected Bibliography
Author Index
Subject Index

601
605

617
623
625



Preface to the Third Edition

The first edition of this text appeared in 1950, and it was so well received that
it went through a second printing the very next year. Throughout the next three
decades it maintained its position as the acknowledged standard text for the intro-
ductory Classical Mechanics course in graduate level physics curricula through-
out the United States, and in many other countries around the world. Some major
institutions also used it for senior level undergraduate Mechanics. Thirty years
later, in 1980, a second edition appeared which was “a through-going revision of
the first edition.” The preface to the second edition contains the following state-
ment: “I have tried to retain, as much as possible, the advantages of the first edition
while taking into account the developments of the subject itself, its position in the
curriculum, and its applications to other fields.” This is the philosophy which has
guided the preparation of this third edition twenty more years later.

The second edition introduced one additional chapter on Perturbation Theory,
and changed the ordering of the chapter on Small Oscillations. In addition it added
a significant amount of new material which increased the number of pages by
about 68%. This third edition adds still one more new chapter on Nonlinear Dy-
namics or Chaos, but counterbalances this by reducing the amount of material in
several of the other chapters, by shortening the space allocated to appendices, by
considerably reducing the bibliography, and by omitting the long lists of symbols.
Thus the third edition is comparable in size to the second.

In the chapter on relativity we have abandoned the complex Minkowski space
in favor of the now standard real metric. Two of the authors prefer the complex
metric because of its pedagogical advantages (HG) and because it fits in well with
Clifford Algebra formulations of Physics (CPP), but the desire to prepare students
who can easily move forward into other areas of theory such as field theory and
general relativity dominated over personal preferences. Some modern notation
such as 1-forms, mapping and the wedge product is introduced in this chapter.

The chapter on Chaos is a necessary addition because of the cutrent interest
in nonlinear dynamics which has begun to play a significant role in applications
of classical dynamics. The majority of classical mechanics problems and appli-
cations in the real world include nonlinearifies, and 1t 1s important for the student
to have a grasp of the complexities involved, and of the new properties that can
emerge. It is also important to realize the role of fractal dimensionality in chaos,

New sections have been added and others combined or eliminated here and
there throughout the book, with the omissions to a great extent motivated by the
desire not to extend the averall length beyond that of the second edition. A section

ix
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was added on the Euler and Lagrange exact solutions to the three body problem.
In several places phase space plots and Lissajous figures were appended to illus-
trate solutions. The damped driven pendulum was discussed as an example that
explains the workings of Josephson junctions. The symplectic approach was clar-
ified by writing out some of the matrices. The harmonic oscillator was treated
with anisotropy, and also in polar coordinates. The last chapter on continua and
fields was formulated in the modern notation introduced in the relativity chap-
ter. The significances of the special unitary group in two dimensions SU(2) and
the special orthogonal group in three dimensions SO(3) were presented in more
up-to-date notation, and an appendix was added on groups and algebras. Special
tables were introduced to clarify properties of ellipses, vectors, vector fields and
1-forms, canonical transformations, and the relationships between the spacetime
and symplectic approaches.

Several of the new features and approaches in this third edition had been men-
tioned as possibilities in the preface to the second edition, such as properties of
group theory, tensors in non-Euclidean spaces, and “new mathematics™ of theoret-
ical physics such as manifolds. The reference to “One area omitted that deserves
special attention—nonlinear oscillation and associated stability questions” now
constitutes the subject matter of our new Chapter 11 “Classical Chaos.” We de-
bated whether to place this new chapter after Perturbation theory where it fits
more logically, or before Perturbation theory where it is more likely to be covered
in class, and we chose the latter. The referees who reviewed our manuscript were
evenly divided on this question.

The mathematical level of the present edition is about the same as that of the
first two editions. Some of the mathematical physics, such as the discussions
of hermitean and unitary matrices, was omitted because it pertains much more
to quantum mechanics than it does to classical mechanics, and little used nota-
tions like dyadics were curtailed. Space devoted to power law potentials, Cayley-
Klein parameters, Routh’s procedure, time independent perturbation theory, and
the stress-energy tensor was reduced. In some cases reference was made to the
second edition for more details. The problems at the end of the chapters were
divided into “derivations” and “exercises,” and some new ones were added.

The authors are especially indebted to Michael A. Unseren and Forrest M.
Hoffman of the Oak Ridge National laboratory for their 1993 compilation of
errata in the second edition that they made available on the Internet. It is hoped
that not too many new errors have slipped into this present revision. We wish fo
thank the students who used this text in courses with us, and made a number of
useful suggestions that were incorporated into the manuscript. Professors Thomas
Sayetta and the late Mike Schuette made helpful comments on the Chaos chapter,
and Professors Joseph Johnson and James Knight helped to claxify our ideas
on Lie Algebras. The following professors reviewed the manuscript and made
many helpful suggestions for improvements: Yoram Alhassid, Yale University;
Dave Ellis, University of Toledo; John Gruber, San Jose State; Thomas Handler,
University of Tennessee; Daniel Hong, Lehigh University; Kara Keeter, Idaho
State University; Carolyn Lee; Yannick Meurice, University of Iowa; Danie]
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Marlow, Princeton University; Julian Noble, University of Virginia; Muhammad
Numan, Indiana University of Pennsylvania; Steve Ruden, University of Califor-
nia, Frvine; Jack Semura, Portland State University; Tammy Ann Smecker-Hane,
University of California, Irvine; Daniel Stump, Michigan State University; Robert
Wald, University of Chicago; Doug Wells, Idaho State University.

It has indeed been an honor for two of us (CPP and JLS) to collaborate as
co-authors of this third edition of such a classic book fifty years after its first ap-
pearance. We have admired this text since we first studied Classical Mechanics
from the first edition in our graduate student days (CPP in 1953 and JLS in 1960),
and each of us used the first and second editions in our teaching throughout the
years, Professor Goldstein is to be commended for having written and later en-
hanced such an outstanding contribution to the classic Physics literature.

Above all we register our appreciation and acknolwedgement in the words of
Psalm 19,1:

Of evpavor Sinyotvrat Sokav Oeod

Flushing, New York HERBERT GOLDSTEIN
Columbia, South Carolina CHARLES P. POOLE, JR.
Columbia, South Carolina JouN L. SAFKO

July, 2000



CHAPTER

1.1 8

Survey of the
Elementary Principles

The motion of material bodies formed the subject of some of the earliest research
pursued by the pioneers of physics. From their efforts there has evolved a vast
field known as analytical mechanics or dynamics, or simply, mechanics. In the
present century the term “classical mechanics” has come into wide use to denote
this branch of physics in contradistinction to the newer physical theories, espe-
cially quantum mechanics. We shall follow this usage, interpreting the name to
include the type of mechanics arising out of the special theory of relativity. It is
the purpose of this book to develop the structure of classical mechanics and to
outline some of its applications of present-day interest in pure physics. Basic to
any presentation of mechanics are a number of fundamental physical concepts,
such as space, time, simultaneity, mass, and force. For the most part, however,
these concepts will not be analyzed critically here; rather, they will be assumed as
undefined terms whose meanings are familiar to the reader.

MECHANICS OF A PARTICLE

T.et r be the radius vector of a particle from some given ongin and v its vector
velocity:

dr
=

1 4 (1.D
The linear momentum p of the particle is defined as the product of the particle

mass and its velocity:
p = mv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton's second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

F=d—psp, (1.3)

1



Chapter 1 Survey of the Elementary Principles

or

d

In most instances, the mass of the particle 1s constant and Eq. (1.4) reduces to

F=mg=ma. (15)

where a is the vector acceleration of the particle defined by

d?r

a= i (1.6)

The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system™) is
a sufficient approximation to an inertial system, while for some astronomical pur-
poses it may be necessary to construct an inertial system by reference to distant
galaxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems, which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these, the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momertum, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp, (1.7)

where 1 is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

d
=N-= — . 1.9
rxF=N rxdt(mv) (1.9)
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Equation (1.9) can be written in a different form by using the vector identity:

d d
—(xxmv)=vxmv+rx —(mv), (1.10)
at dt

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

d dL .
=— =-—=L. 1.11
N dt(rxmv) ’r L (1.11)

Note that both N and L depend on the point O, about which the moments are
taken.

As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem for the Angular Momentum of a Farticle: If the total
torque, N, is zero then L = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
Wi = / F.ds. {1.12)
J1

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

dv m d )
. ds = ~wdt=— | = ,
fF ds mfdt vdt 2[dt(v)a.’t

m
Wiz = 5(1;3 —v). (1.13)

and therefore

The scalar quantity mv?/2 is called the kinetic energy of the particle and is de-
noted by T, so that the work done is equal to the change n the kinetic energy:

Wia=1 —T3. (1.14)

If the force field is such that the work Wy, is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system is obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of W), on
the particular path implies that the work done around such a closed circuit is zero,
i.e.

%F-ds=0. (L.15)
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Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F + ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, W2, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV@), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intuitively by a simple argument. If Wi is independent of the path of
integration between the end points 1 and 2. it should be possible to express Wiy
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by —V, so that for a differential path length we
have the relation

F.ds=-dV
or
av
FY = T
as

which is equivalent to Eq. (1.16). Notc that in Eq, (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

W=V, —W. (1.1D
Combining Eq. (1.17) with Eq. (1.14), we have the result
i+ Vi=T4 VW, (1.13)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the totul energy of the particle, T + V, is conserved.

The force applied to a particle may in some circumstances be given by the
gradient of a scalar function that depends explicitly on both the position of the
particle and the time. However, the work done on the particle when it travels a
distance ds,

F.ds=——ds,
as d

is then no longer the total change in —V during the displacement, since V also
changes explicitly with time as the particle moves. Hence, the work done as the
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particle goes from point 1 to point 2 is no longer the difference in the function V
betwezn those points. While a total energy T + V may still be defined, it is not
conserved during the course of the particle’s motion.

MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the system. and internal forces on, say, some particle i due to all
other particles in the system. Thus, the equation of motion (Newton's second law)
for the ith particle is written as

Y F.+E9 =p, (119)
J

where F,(e) stands for an external force, and F, is the internal force on the ith
particle due to the jth particle (F,,, naturally, is zero). We shall assume that the
F,, (like the F’) obey Newton’s third law of motion in ifs original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weauk
law of action and reaction

Summed over all particles, Eq. (1.19) takes the form

d2
TZmn=3 FO+3 K, (1.20)
' ' idj
The first sum on the right is simply the total external force F(), while the second
term vanishes, since the law of action and reaction states that each pair F,; +F

is zero. To reduce the left-hand side, we define a vector R as the average of the
radii vectors of the particles, weighted in proportion to their mass:

The vector R defines a point known as the center of mass, or more loosely as the
center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

MR _ > FY =F® (122)
di? — '

which states that the center of mass moves as if the total external force were

acting on the entire mass of the system concentrated at the center of mass. Purely

internal forces, if the obey Newton’s third law, therefore have no effect on the
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FIGURE 1.1 The center of mass of a system of particles.

motivn of the center of mass. An ofi-quoted example 1s the motion of an exploding
shell—the center of mass of the fragments traveling as if the shell were still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the ejection of the exhaust gases at high velocity must be counterbalanced by the
forward motion of the vehicle at a slower velocity.

By Eq. (1.21) the total hnear momentum of the system,

dr; dR
P=Zm,z =M—d—t, (1.23)

is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated &s
the

Consenvation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved.

We cbtain the total angular momentum of the system by forming the cross
product r; x p, and summing over i. If this operation is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

. d .
Y (o xp) = :E(r, xp)=L=) rxF9+> 1, xF; (1.24)
I3 il H iy
i#J)

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

l',XFj;'l‘l‘J XF;jZl:r,—l'J)XFJ;, (1.25)
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FIGURE 1.2 The vector r;; between the ith and jth particles.

using the equality of action and reaction But r; — r, is identical with the vector
r,; from j to i (cf. Fig. 1.2), so that the right-hand side of Eq. (1.25) can be written
as

F, xF]l'

If the internal forces between two particles, in addition to being equal and oppo-
site, also lie alung the line joining the particles—a condition known as the strong
law of action and reaction—then all of these cross products vanish. The sum over
pairs is zero under this assumption and Eq. (1.24) may be written in the form

dL

— =N@. 1.26

T (1.26)
The time derivative of the total angular momentum is thus equal to the moment

of the external force about the given point, Corresponding to Eq. (1.26) is the

Conservation Theorem for Total Angular Momentum: L is constant in time if the
applied (external) torque is zero.

(It is perhaps worthwhile to emphasize that this is a vector theorem; i.c., L,
will be conserved if Ni? is zero, even if N and N ©) are not zero.)

Note that the conservation of linear momentum in the absence of applied forces
assumes that the weak law of action and reaction is valid for the internal forces.
The conservation of the total angular momentum of the system in the absence of
applied torques requires the validity of the strong law of action and reaction—that
the internal forces in addition be central. Many of the familiar physical forces,
such as that of gravity, satisfy the strong form of the law. But it is possible to
find forces for which action and reaction are equal even though the forces are not
central (see below). In a system involving moving charges, the forces between
the charges predicted by the Biot-Savart law may indeed violate both forms of
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the action and reaction law.* Equations (1.23) and (1.26), and their corresponding
conservation theorems, are not applicable in such cases, at least in the form given
here. Usually it is then possible to find some generalization of P or L that is
conserved, Thus, in an isolated system of moving charges it is the sum of the
mechanical angular momentum and the electromagnetic “angular momentum” of
the field that is conserved.

Equation (1.23) states that the total linear momentum of the system is the same
as if the entire mass were concentrated at the center of mass and moving with it.
The analogous theorem for angular momentum is more complicated. With the
ongin O as reference point, the total angular momentum of the system is

L=Zr, xp;.
1

Let R be the radius vector from O to the center of mass, and Iet r: be the radius
vector from the center of mass (o the ¢th particle. Then we have (cf. Fig. 1.3)

r=r+R (1.27)
and
v, =V, +v
where
_ R
ar

Center
of mass

FIGURE 1.3 The vectors involved in the shift of reference point for the angular momen-
tum.

*If two charges are moving uniformly with parallel velocity vectors that are not perpendicular to the
line joining the charges, then tie net mutual forces are equal and opposite but do not lie along the
vector between the charges. Consider, further, two charges moving (instantaneously) so as to “cross
the T,” 1.6., one charge moving dircetly at the other, which in turn 15 moving at right angles to the first
Then the second charge exerts a nonvanishing magnetic force on the first, without experiencing any
magnetic reaction force at that mstant,
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is the velocity of the center of mass relative to O, and

_d
T dt

is the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

L=!ZR xm,v-i—Xi:r: X mv, + (lZm,rﬁ) x v+ R x %'Zm,rj

The last two terms in this expression vanish, for both contain the factor mlr:,
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=RxMv+) r xp| (1.28)
]

In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momentum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
il the center of mass 15 at rest with respect to O will the angular mementum be
independent of the point of reference. In this case, the first ierm in (1.28) vanishes,
and L always reduces to the angular momentum taken about the center of mass.

Finally, let us consider the energy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system from an initial
configuration 1, to a final configuration 2:

2 2 2
W12=Efl F,-ds,:Z/l Ff“)~ds,+2/l F, -ds,. (129
i i Ly
1%}

Again, the equations of motion can be used to reduce the mtegrals to

2 2 2
Zfl F,-ds:Zfl m,\",.v,dt=le; d(émfvg).

Hence, the work done can still be written as the difference of the final and initial
kinetic energies:

Wi2=1T,—-T1,

where T, the total kinetic energy of the system, is

1 2
T=§lZm,v,. (1.30)
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Making use of the transformations to center-of-mass coordinates, given in Eq.
(1.27), we may also write T as

T = %Z‘:m,(V+V1)-(V+Vf)

1 1 d
= -jz‘:m,v2+—izm:v?+"- % (Zi:mzrf),

and by the reasoning already employed in calculating the angular momentum, the
last term vanishes, leaving

1 !
T=5Mv2+52m,v"2 (1.31)
[

The kinetic energy, like the angular momentum, thus also consists of two parts:
the kinetic energy obtained if all the mass were concentrated at the center of mass,
Pplus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eqg. (1.29). In the special case that the
external forces are derivable in terms of the gradient of a potential, the first term
can be written as

Z‘/lefe)-ds, =—Z-/;2V,W-ds,=—2m
H 1 1

where the subscript i on the del operator ndicates that the derivatives are with
respect to the components of r,. If the internal forces are also conservative, then
the mutual forces between the ith and jth particles, F;, and F,,, can be obtained
from a potential function V;, . To satisfy the strong law of action and reaction, V;,
can be a function only of the distance between the particles:

2
s
1

Vy =V, —r; 1) (1.32)
The two forces are then automatically equal and opposite,
F;, =-V\V, =4+V,V,, =-F,, (1.33)
and lie along the line joining the two particles,

VVlr—r ) =@ —r)/f, (1.34)

where j is some scalar function. If ¥}, were also a function of the difference of
some other pair of vectors associated with the particles, such as their velocities
or (to step into the domain of modern physics) their intrinsic “spin” angular mo-
menta, then the forces would still be equal and opposite, but would not necessarily
lie along the direction between the particles.
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When the forces are all conservative, the second term in Eq. (1.29) can be
rewritten as a sum over pairs of particles, the terms for each pair being of the
form

2
_.[1 (V\ Vi - ds, + V,V,, - ds;).

If the difference vector r. —r, is denoted by r,;, and if V;; stands for the gradient
with respect tor,,, then

ViV, =V, Vi, ==V, V,.
and
ds, —ds;, =dr, —dr; = dr,j,

so that the term for the i, pair has the form

—fv”‘]” -dl‘u.

The total work arising from internal forces then reduces to

1 2 1
_5;/1 v, Vi -dr, = —EIZJ:V,J

iy 1%

2
(135)

1

The factor % appears in Eq. (1.35) because in summing over both / and j each
member of a given pair ‘s included twice, first in the i summation and then in the
J summation.

From these considerations, it is clear that it the external and mternal forces are
both derivable from potentials it is possible to define a total potential energy, V,
of the system,

V=ZV;+%ZV,]. (1.36)
C T
such that the total enerzy T + V is conserved, the analog of the conservation
theorem (1.18) for a single particle.

The second term on the right in Eq. (1.36) will be called the internal potential
energy of the system. In general, it need not be zero and, more important, it may
vary as the system changes with time. Only for the particular class of systems
known as rigid bodies will the internal potential always be constant. Formally,
a rigid body can be defined as a system of particles in which the distances r,
are fixed and cannot vary with time. In such case, the vectors dr;; can only be
perpendicular to the corresponding r;;, and therefore to the F;;. Therefore, mn a
rigid body the internal jorces do no work, and the internal potential must remain
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constant. Since the total potential is in any case uncertain to within an additive
constant, an unvarying internal potential can be completely disregarded in dis-
cussing the motion of the system.

CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

m[i:, = FI(E) - ZFJ[.
J

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take 1nto account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances r,,
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

fry,r,rs,...,0) =0, (L.37)

then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

x, — r,)2 —cf, =0.
A particle constrained to move along any curve or on a given surface is another
obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a constraint.

Constraints nul expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

r2—a’>0
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(where q is the radius of the sphere), which is not in the form of (1.37). Thus, in
a gravitational field a particle placed on the top of the sphere will slide down the
surface part of the way but will eventually fall off.

Constraints are further classified according to whether the equations of con-
straint contain the time as an explicit variable (rheonomous) or are not explicitly
dependent on time (scleronomous). A bead sliding on a rigid curved wire fixed
in space is obviously subject to a scleronomous constraint; if the wire is moving
in some prescribed fashion, the constrant is rheonomous. Note that if the wire
moves, say, as a reaction to the bead’s motion, then the tune dependence of the
constraint enters in the equation of the constraint only through the coordinates
of the curved wire (which are now part of the system coordinates). The overall
constraint is then scleronomous.

Constraints introduce two types of difficulties in the solution of mechanical
problems. First, the coordinates r, are no longer all independent, since they are
connected by the equations of constraint; hence the equations of motion (1.19)
are not all independent. Second, the forces of constraint, e.g., the force that the
wire exerts on the bead (or the wall on the gas particle), is not furnished a pri-
orl. They are among the unknowns of the problem and must be obtained from the
solution we seek. Indeed, imposing constraints on the system 1s simply another
method of stating that there are forces present in the problem that cannot be spec-
ified directly but are known rather in terms of their effect on the motion of the
system.

In the case of holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates. A system of N particles. free from constraints,
has 3N independent coordinates or degrees of freedom. If there exist holonomic
constraints, expressed in & equations in the form (1.37), then we may use these
equations to eliminate &k of the 3N coordinates, and we are left with 3N — k inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom.
This elimination of the dependent coordinates can be expressed in another way,
by the introduction of new, 3N — k, independent variables g1, 42, - .., g3n—z in
terms of which the old coordinates ry, I3, ..., Iy are expressed by equations of
the form

r=ri(qg1. 42 ....43n-4, 1)

(1.38)
Iy = l'N(qb q2, ... Q3N k> t)

containing the constraints in them implicitly. These are transformation equations
from the set of (r;) vatiables to the (g;) set, or alternatively Egs. (1.38) can be con-
sidered as parametric representations of the (ry) variables. It is always assumed
that we can also transform back fiom the (¢;) to the (r;) set, i.e., that Eqs. (1.38)
combined with the k equations of constraint can be inverted to obtain any ¢, as a
function of the (ry) variable and time.
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Usually the generalized coordinates, gy, unlike the Cartesian coordinates, will
not divide into convenient groups of three that can be associated together to form
vectors. Thus, in the case of a particle constrained to move on the surface of a
sphere, the two angles expressing position on the sphere, say latitude and longi-
tude, are obvious possible generalized coordinates. Or, in the example of a double
pendulum moving in a plane (two particles connected by an inextensible hght
rod and suspended by a similar rod fastened to one of the particles), satisfactory
generalized coordinates are the two angles 8, 8>. (Cf. Fig. 1.4.) Generalized co-
ordinates, in the sense of coordinates other than Cartesian, are often useful in
systems without constraints. Thus, in the problem of a particle moving in an ex-
ternal central force field (V = V(r)), there is no constraint involved, but 1t is
clearly more convenient to use spherical polar coordinates than Cartesian coordi-
nates. Do not, however, think of generalized coordinates in terms of conventional
orthogonal position coordinates. All sorts of quantities may be impressed to serve
as generalized coordinates. Thus, the amplitudes in 4 Fourier expansion of r, may
be used as generalized coordinates, or we may find it convenient to employ quan-
tities with the dimensions of energy or angular momentum.

If the constraint is nonholonomic, the equations expressing the constraint can-
not be used to eliminate the dependent coordinates. An oft-quoted example of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally invalve
angular coordinates to specify the orientation of the body, plus a set of coordi-
nates describing the location of the point of contact on the surface. The constraint
of “rolling” connects thzse two sets of coordinates; they are not independent. A
change in the position of the point of contact inevitably means a change in its
orientation. Yet we cannot reduce the number of coordinates, for the “rolling”
condition is not expressible as a equation between the coordinates, in the manner
of (1.37). Rather, it is a condition on the velacities (i e , the point of contact is
stationary), a differential condition that can be given in an integrated form only
gfter the problem is solved.

FIGURE 1.4 Double pendulum.
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0o x
FIGURE 1.5 Vertical disk rolling on a horizontal plane.

A simple case will illustrate the point. Consider a disk rolling on the horizontal
xy plane constrained to move so that the plane of the disk is always vertical.
The coordinates used to describe the motion might be the x. y coordinates of the
center of the disk, an angle of rotation ¢ sbout the axis of the disk, and an angle
@ between the axis of the disk and say, the x axis (cf. Fig 1.5). As a result of the
constraint the velocity of the center of the disk, v, has a magnitude proportional

to ¢,
v =ap,

where a is the radius of the disk, and its direction is perpendicular to the axis of
the disk:

x = vsind

y = —vcosf.
Combining these conditions, we have two differential equations of constraint:

dx — asinéd¢ =0,

(1.39)
dy +acosbdeg =0.

Neither of Egs. (1.39) can be integrated without in fact solving the problem,; i.e.,
we cannot find an integrating factor f(x, y, 0, ¢) that will turn either of the equa-
tions into perfect differentials (cf. Derivation 4).* Hence, the constraints cannot
be reduced to the form of Eq. (1.37) and are therefore nonholonomic. Physically
we can see that there can be no direct functional relation between ¢ and the other
coordinates x, y, and @ by noting that at any point on its path the disk can be

*In principle, an integrating factor can always be found for a first-order di-ferential equation of con-
straint in systems involving only two coordinates and such constraints are therefore holonomic. A
famliar example 1s the two-dimensional motion of a circle rolling on an inchined plane.
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made to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, x, ), and 8 have been returned to their original values, but ¢
has changed by an amoant depending on the radius of the circle.

Nonintegrable differential constraints of the form of Eqs. (1.39) are of course
not the only type of nonholonomic constraints. The constraint conditions may
involve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints are always amenable to a formal solution. But there is
no general way to attack nonholonomic examples. True, if the constraint is nonin-
tegrable, the differential equations of constraint can be introduced into the prob-
lem along with the differential equations of motion, and the dependent equations
eliminated, in effect, by the method of Lagrange multipliers.

‘We shall return to this method at a later point. However, the more vicious cases
of nonholonomic constraint must be tackled individually, and consequently in the
development of the more formal aspects of classical mechanics, it is almost invari-
ably assumed that any constraint, if present, is holonomic. This restriction does
not greatly limit the applicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic. The reason is that the
entire concept of constraints imposed in the system through the medium of wires
or surfaces or walls is particularly appropriate only in macroscopic or large-scale
problems. But today physicists are more interested 1n atomic and nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller particles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then used only
as mathematical idealizations to the actual physical case or as classical approxi-
mations to a quantum-mechanical property, e.g., rigid body rotations for “spin.”
Such constraints are always holonomic and fit smoothly into the framework of the
theory.

To surmount the second difficulty, namely, that the forces of constraint are
unknown a priori, we should like to so formulate the mechanics that the forces
of constraint disappear. We need then deal only with the known applied forces. A
hint as to the procedure to be followed is provided by the fact that in a particular
system with constraints ie arigid body, the work done by internal forces (which
are here the forces ot constraint) vanishzs. We shall follow up this clue in the
ensuing sections and generalize the ideas contained in it.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A viral (infinitesimal’ displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates 8r,, consistent with the forces and constraints imposed on the system
at the given instant t. The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the totat force on each particle vanishes, F; = 0. Then clearly the dot product
F, « ér,, which is the virtual work of the force F; in the displacement §r,, also
vanishes. The sum of these vanishing products over all particles must likewise be
Zero:

ZF, Lo, = 0. (1.40)

As yet nothing has been said that has any new physical content. Decompose F,
into the applied force, F,(“), and the force of constraint, f;,

F, = F“ + 1. (1.41)
so that Eq. (1.40) becomes

ZFS“’.Sr,+EF, LA =0 (1 42)
1

We now restrict ourselves to systems for which the net virtual work of the
Jorces of constraint is zero. We have seen that this condition holds true for rigid
bodies and it is valid for a large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This is no longer true if sliding friction forces are present, and
we must exclude such systems from our formulation. The restriction is not un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On
the other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily at rest and can do no work in an infinites-
imal displacement consistent with the rolling constraint. Note that if a particle is
constrained to a surface that is itself moving in time, the force of constraint is
instantaneously perpendicular to the surface and the work during a virtual dis-
placement is still zero even though the work during an actual displacement in the
time d¢ does not necessarily vanish.

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

Y F o, =0. (1.43)

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of §r, can no longer be set equal to zero; i.e., in general F,(a) 4 0, since
the ér; are not completely independent but are connecied by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g,, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

Ft =f’x,
can be written as
Fr _].)1 = 0»

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),
we can immediately write

D ® —p)-or =0, (1.44)

and, making the same resolution 1nto applied torces and torces of constraint, there
results

S FD —piysr + > £ -ori =0,
i [

We again restrict oursclves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

Y E® —pi)-or, =0, (1.45)

which 1s often called D'Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear. and the superscript ) can now e
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
Aq, can be set separately equal to zero.

The translation fromr, to ¢, language starts from the transformation equations
(1.38),

N =ri{g1,q2,....91t) (1.45"
(assumuing r independent coordinates), and is carried out by means of the usual

“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the gx by the formula
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Similarly, the arbitrary virtual displacement ér, can be connected with the virtual
displacements 8¢, by

dr,
e, = Z &éaqj (1 47)

Note that no variation of time, §t, is involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates, the virtual work of the F, becomes

ar,
D Fi-dri=) F - —dq,
i 1, 36]]
=3 0,3q,. (1.48)
J

where the Q) are called the components of the generalized force, defined as

=2k or. (149)
9a,

Note that just as the g’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but @,8g, must always have the
dimensions of work. For example, @, might be a torque N, and dg; a differential
angle d6;, which makes N, 40, a differential of work.

We turn now to the other other term nvolved m Eqg. (1.45), which may be
written as

Z <81, = Zm,r, . 81,

1

Expressing dr; by (1.47, this becomes

. o
Z . 3
5 4,

Consider now the relation

. or d . or . d [0 )il _
¢ — = e — ] — ce—1l—11. 1.50
Zl:mlrl 3q, 1 I:df (mxrx aq}) mr, pT (qu ( )

In the last term of Eq. (1.50) we can interchange the differentiation with respect
to ¢ and g, for, in analogy to (1.40).
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d(ar,)_af,_ 3?r, it 9°r,
dt \da;)  dq, bq,9a X" Bq,01°
Bv,
qu

by Eq. (1.46). Further, we also see from Eq. (1.46) that
dv;  Or
oq, 9q; '
Substitution of these changes in (1.50) leads to the result that

Z"” ——Z A W )/}
llaj dt t,é xtaqj,

1

(1.51)

and the second term on the lefi-hand side of Eq. (1.45) can be expanded into

XJ:I% [% (Z%m )] %, (Z 2 )_ Q"“s""

Identifying Y, %m, v,2 with the system kinetic energy T, D’ Alembert’s principle
(cf. Eq. (1.45)) becomes

d (0T aT 5
ECIE RICENE

Note that in a system of Cartesian coordinates the partial derivative of T with
respect to g; vanishes. Thus, speaking in the language of differential geomery,
this term arises from the curvature of the coordinates g,. In polar coordinates,
e.g., itis in the partial derivative of T with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables ¢, can be any
set of coordinates used to describe the motion of the system. If, however, the con-
straints are holonomic, then it is possible to find sets of independent coordinates
g, that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement 8¢, is then independent of dgx, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (8T aT
—_ | — 1.53
dt (341 ) 3‘11 — o (133

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F,=-VV.
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Then the generalized forces can be written as

¢ l', al',
= F, - = - v,V.—,
Q] 2‘ 1 34, E, i 34,

which is exactly the same expression for the partial derivative of a function
=V(r),r2, ..., Ty, t) with respect to g;:
av
Q,=—-—— (1.54)
J aql
Equations (1.53) can then be rewritten as

i(ﬁl)_ﬂliﬁl=u (1.55)
dt \ 8g; aq,

The equations of motion in the form (1.55) are not necessanly restricted to conser-
vative systems, only if V is not an explicit function of time is the systcm conscerva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term i V in the partial derivative with respect

tog,:

d (B(T—V))_B(T—V) —0
de \ 34, 9q,
Or, defining a new function, the Lagrangian L, as
L=T-V, (1.56)
the Eqs. (1.53) become
d (3L L
£ ("—. L) w57
de \ g, dq,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Eqs (1 57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 itis shownthatif L(g,4, )
is an approximate Lagrangian and F(g, ) is any differentiable function of the
generalized coordinates and time, then

L@d0=L@.an+5 1.57)
is a Lagrangian also resulting in the same equations of motion. It is also often
possible to find alternative Lagrangians beside those constructed by this prescrip-
tion (see Exercise 20). While Eq. (1.56) is always a suitable way to construct a
Lagrangian for a conservative system, it does not provide the only Lagrangian
suitable for the given system.
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VELOCITY-DEPENDENT POTENTIALS AND
THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V', in the usual sense, providing the generalized forces are obtained from
a function U(q,, 4,) by the prescription

oU d [aU

=——+=|—]. 1.58

= dq, dt (3‘11') (4%

In such case, Egs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by

L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely. the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while,

Consider an electric charge, g, of mass m moving at a velocity. v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field.
B, which may depend upon time and position. The charge experiences a force,
called the Lorentz force, given by

F=¢q[E+ (vx B)]. (1.60)

Both E(1, x, y, z) and B{t, x, v, z) are continuous functions of time and positon
derivable from a scalar potential ¢ (¢, x, y, z) and a vector potential A(¢t, X, y,z)

by

E=-Vp-— (1.612)

and
B=VxA. (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qg¢ —qgA-v, (1.62)
so the Lagrangian, L =T — U, is

L=3im’—gp+qA-v. (1.63)
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Considering just the x-component of Lagrange’s equations gives

. 34 9A, A, (a¢ dA,
mx"q(”“ TV TV )T\t ) (1.64)

The total time derivative of A, is related to the particle time derivative through

dA, dA,
= .V
dt at TV-VA
an an an an
= , ) 1.65
g Uy T TR, (1.65)

Equation (1.61b) gives

394, 9A 34, 0A
(VXB)"=”>'(3_;_ avx)”z(a_xz_ azx)‘

Combining these expressions gives the equation of motion in the x-direction
mX = q [Ex + (v x B);]. (1.66)

On a component-by-component comparison, Egs. (1.66) and (1.60) are identical,
showing that the Lorentz force equation is derivable from Egs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

d (3L aL
Z\3a. ) a0 = Qj,
£ \9q;
where L contains the potential of the conservative forces as before, and Q, rep-
resents the forces not arising from a potential. Such a situation often occurs when

frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

Ff,\, = _kxvt.

Frictional forces of this type may be denved in terms of a function JF, known as
Rayleigh’s dissipation function, and defined as

1
F=3Y (et + 02, + ke ) (1.67)
3

where the summation is over the particles of the system. From this definition it is
clear that

aF

vy

Ff =—
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or, symbolically,

F;=—V,F. (1.68)

We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

de = —Ff «dr= —Ff cvdl = (kxvi +kyv§ —kzvzz) dt.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
gencralized force resulting from the force of friction is then given by

ar; or;
QJ:ZFf"a; =“ZV"7:‘3_;:

Y VFR L bys,
9q,

_9F (1.69)

An example is Stokes’ law, whereby a sphere of radius 2 moving at a speed
v, in a medium of viscosmity 7 experiences the frictional drag force F ; = 6z nav.
The Lagrange equations with dissipation become

d (oL aL aF
Sl il D P 1.70
a (aéj) 5q, T 8d, 110

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.

SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION

The previous sections show that for systems where we can define a Lagrangian,
i.e., holonomic systems with applied forces derivable from an ordinary or gen-
eralized potential and workless constraints, we have a very convenient way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire to eliminate the forces of constraint from the equations of motion,
and in achieving this goal we have obtained many other benefits. In setting up the
original form of the equations of motion, Egs. (1.19), it is necessary to work with
many vector forces and accelerations. With the Lagrangian method we only deal
with two scalar functions, T and V, which greatly simplifies the problem.

A straightforward routine procedure can now be established for all problems
of mechanics to which the Lagrangian formulation is applicable. We have only to
write T and V in generalized coordinates, form L from them, and substitute in
(1.57) to obtain the equations of motion. The needed transformation of 7 and V
from Cartesian coordinates to generalized coordinates is obtained by applying the
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transformation equations (1.38) and (1.45). Thus, T is given in general by

2
| 1 or,, or
T=Z§’"="t=zim‘( _“"”a_t')'
f ! 7

aq;

It is clear that on carrying out the expansion, the expression for T in generalized
coordinates will have the form

., 1 . -
T=My+Y Mg+ > D Mg, dn (1.71)
7 Ik

where Mo, M,, M j; are definite functions of the r’s and ¢ and hence of the ¢’s
and ¢. In fact, a comparison shows that

M= "mot L, (1.72)
1

and

dr;  Or;
M, = E Ry — .
a ; la% gk

Thus, the kinetic energy of a system can always be written as the sum of three
homogeneous functions of the generalized velocities,

=T+ T +1 (1.73)

where Ty is independent of the generalized velocities, T} is linear in the velocities,
and T; is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time
(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and 7 is
always a homogeneous quadratic form in the generalized velocities.

Let us now consider simple examples of this procedure:

1. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

2. Atwood’s machine
3. Time-dependent constraint—bead sliding on rotating wire

1. (2) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.33) are obviously Fx, Fy, and F;. Then
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g = 8—);- = ? = 0,
aT _ ; aT R oT
ax =m H a).) - ys a - mZa
and the equations of motion are
d d d
—_ ) — s — v) = F., — 7y = F,. .
77 %) = Fx M =F, m)=F, (1.74)

We are thus led back to the original Newton’s equations of motion.

(b) Motion of one particle: using plane polar coordinates. Here we must ex-
press T in terms of 7 and 8. The equations of transformation, i.e., Egs. (1.38), in
this case are simply

x =rcosf
y =rsind.
By analogy to (1.46), the velocities are given by
i =7cosf —rfsind,
§ =Fsinf +rfcosh.
The kinetic energy T = %m(.ifz + 72) then reduces formally to
T =m[i?+ (r6)"]. (1.75)

An alternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are # along r, and 6 along the direction per-
pendicular to 7, denoted by the unit vector n. Hence, the square of the velocity
expressed in polar coordinates is simply 7 + (+6)>. With the aid of the expression

dr = tdr +r0do +kdz

for the differential position vector, dr, in cylindrical coordinates, where f and
@ are unit vectors in the r and @-directions, respectively, the components of the
generalized force can be obtained from the definition, Eq. (1.49),
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rAfn

r(6+A8)

FIGURE 1.6 Derivative of r with respect to 6.

since the derivative of r with respect to 6 is, by the definition of a derivative, a
vector in the direction of @ (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the » equation
are

aT 2 oT _ d (3T -
- = 6, — = r., vl el v,
ar " ar de \ a7 "

and the equation itself i«
mi — mré* = F,,

the second term being the centripetal acceleration term. For the 8 equation, we
have the derivatives

9T a1 2 d [ 5. 25 s

— =0, — =mr-o, —(mr 9)=mr9+2mrr9,

a6 a6 dt
0 that the equation becomes

d . " .

p (mr29) = mr28 + 2mri@ = r Fp.

Note that the left side of the equation is just the time derivative of the angular
momenturi, and the right side is exactly the applied torque, so that we have simply
rederived the torque equation (1.26), where L = mr26 and N = r Fy.

2. Atwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic. scleronomous constraint (the pulley is assumed frictionless and
massless). Clearly there is only one independent coordinale x, the position of
the other weight being determined by the constraint that the length of the rope
between them is [. The potential energy is

V=—Mgx—Mgl-x),
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Mz_!

FIGURE 1.7 Atwood’s machine.

while the kinetic energy is
T =1+ My it
Combining the two, the Lagrangian has the form
L=T-V=1M +M)x*+ Mgx + Mgl —x).

There is only one equation of motion, involving the derivatives

6L
X
aL .
ax

so that we have
My +M)X =My — M) g,

or
. M —M
Ii=——"g,
My 4+ M,

which is the familiar result obtained by mote elementary means. This trivial prob-
lem emphasizes that the forces of constraint—here the temnsion in the rope—
appear nowhere in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangian method.

3. A bead (or ring) shding on a uniformly rotating wire in a force-free space.
The wire is straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint
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being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X =rcoswt. (@ = angular velocity of rotaticn)
y=rsinwt. (r = distance along wire from rotation axis)
While we could then find 7 (here the same as L) by the same procedure used to

obtain (1.71), it. is simpler to take over (1.75) directly, expressing the constraint
by the relation 8 = w:

T= m(f'2+r2 2).

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now an additional term not involving 7. The equation of motion is
then

=

P ]
mr=mrw =0
or
v 2
F=row’,

which 1s the familiar simple harmonic oscillator equation with a change of sign.
The solution r = e*' shows that the bead moves exponentially outward because
of the centripetal acceleration. Again, the method cannot furnish the force of con-
straint that keeps the bead on the wire. Equation (1.26) with the angular momen-
tum, L = mrw?e® . provides the force F = N/r, which produces the constraint
force, F = mrw?e®”, acting perpendicular to the wire and the axis of rotation.

DERIVATIONS

1. Shew that for a single particle with constant mass the equation of motion implies the
following differential equation for the kinetic energy:

dT
Z_ ~F.v,
dr v
while if the mass varies with time the corresponding equation is
d(mT)
dt F

2. Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

1
2 nl
MR =My myrl — =% immr.
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3.

80

Suppose a system of two particles is known to obey the equations of motion, Eqgs.
(1.22) and (1.26). From the equations of the motion of the individual particles show
that the internal forces between particles satisfy both the weak and the strong laws
of action and reaction The argument may be generalized to a system with arbitrary
number of particles, thus proving the converse of the arguments leading to Egs. (1.22)
and (1.26).

- The equations of constraint for the rolling disk, Egs. (1.39), are special cases of gen-

erzl Iinear differential equations of constraint of the form

n
Eg, (x1s . xp)dx, =0.
=1

A constraint condition of this type is holonom:ic only if an integrating function
fCxy, ..., xp) can be found that turns it into an exact differential. Clearly the func-
tion must be such that

3 (fg) _ 9(fg;)

ox,; ax,

forall i % j. Show that no such integrating factor can be found for either of Egs.
(1.39).

Two wheels of radius ¢ are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping on
a plane. Show that therz are two nonholonomic equations of constraint,

cosfdx +sinfdy =0
sinfdx — cosOdv = 1a (d¢ + d¢'),

(where 6, ¢, and ¢’ have meanings similar to those in the problem of a single vertical
disk, und (x, ¥) are the coordinates of a point on the axle midway between the two
wheels) and one holonomic equation of constraint,

a I
9=C—Z@—¢l

where C is a constant,

A particle moves 1n the xy plane under the constraint that its velocity vector is al-
ways ditected towards a point on the x axis whose abscissa is some given function of
time f(z). Show thal for f(¢) differentiable, but otherwise arb.trary, the constraint is
notholonomic.

. Show that Lagrange’s equations in the form of Egs. (1.53) can also be written as

T aT
- —2—=0,.
34; 3q, 4

These are sometimes known as the Nielsen form of the Lagrange equations.

If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equa-
tions, show by direct substitution that
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10.

dF(gy.....qn, 1)

U=L
+ ar

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable, func-
tion of its arguments.

The electromagnetic field is invariant under a gauge transformation of the scalar and
vector potential given by

A= A+Vy(@, 1),

. Oy
A
where ¥ 15 arbitrary (but differentiable), What effect does this gauge transformation
have on the Lagrangian of a particle moving in the electromagnetic field? Is the motion

affected?

Let gy, ....qn be a set of independent generalized coordinates for a system of n
degrees of freedom, with a Lagrangian L(q, ¢, t). Suppose we transform to another
set of independent coordinates 51, .. ., s, by means of transformation equations

ql=ql(s|i"-s~sn!t)v 1=1,...,n.

(Such a transformation is called a powmt transformation.) Show that if the Lagrangian
function is expressed as a function of 5;, §,, and ¢ through the equations of transfoi-
mateon, then L satisfies Lagrange’s equations with respect to the s coordinates:

d (BL) oL -0
dt 8.&1 8.91

In other words, the form of Lagrange’s equations js invariant under a pont transfor-
mation.

EXERCISES

11.

12

13.

Consider a uniform thin disk that rolls without slipping on a horizontal plane. A hori-
zontal force is applied to the center of the disk and in a direction parallel to the plane
of the disk.

(a) Denve Lagrange’s equations and find the generalized force.

(b) Discuss the motion If the force is not applied parallel to the plane of the disk.

The escape velocity of a particle on Earth is the minimum velocity required at Earth’s
surace in order that the particle can escape from Earth’s gravitationa] field. Neglecting
the resistance of the atmosphete, the system is conservative. From the conservation
theuremn for potenual plus kinetic energy show that the escape velocity for Earth,
1gnoring the presence of the Moon, is 11.2 km/s.

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket, the
mass of (he rocket is not constant, but decreases as the fuel is expended. Show that the
equation of motion for a rocket projected vertically upward in a uniform gravitational
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14,

15.

16.

17.

18.

field, neglecting atmospheric friction, 1s

where m 15 the mass of the rocket and v’ is the velocity of the escaping gases relative to
the rocket. Integrate this equation to obtain v as a function of m, assuming a cons-ant
time rate of loss of mass. Show, for a rocket starting initially from rest, with v’ equal
t0 2.1 m/s and a mass loss pei second equal to 1/60th of the initial mass, that in order
to reach the escape velocity the ratio of the weight of the fuel Lo the weight of the
empty rocket must be almost 300!

Two points of mass m are joined by a ngid weightless rod of length {, the center of
which is constrained to move on a circle of radius a. Express the kinetic energy 1n
generalized coordinates.

A point particle moves in space under the influence of a force derivable from a gener-
alized potential of the form

Ua,vW=V(@)+wou-L,

where r is the radws vector from a fixed point, L 1s the angular momentum about that

point, and o is a fixed vector in space.

(ar Find the components of the force on the particle m both Cartesian and sphencal
polar coordiates, on the basis of Eq. 11.58).

(b) Show that the components 1n the two coordinate systems wre related to each other
as 1n Eq. (1.49).

(¢} Obtain the equations of motion in sphencal polar coordinates.

A particle moves in a plane under the influence of a force, acting toward a center of
force, whose magnituce 15
po L, P2
2 o2 '

where 7 15 the distance of the particle to the center of force. Find the generalized
potential that will resuit in such a force, and from that the Lagrangan for the motion
1 a plane. (The expression for F represents the force between Lwo charges in Weber’s
electrodynarnics.)

A nucleus. originally at rest, decays radiozctively by emutting an electron of momen-
tum 1.73 MeV/c, and at right angles to the direction of the eleciron a neutrino with
momentum [.00 MeV/e. (The MeV, million electron volt, is a unit of energy used
in modern physics, equal to 1.60 x 10~!3 J. Correspondingly, MeV/c 1s a unit of
linzar momentum equal to 5.34 x 10722 kg-m/s.) In what direction does the nu-
cleus recoil? What is _ts momentum 1n MeV/c? If the mass of the residual nucleus
is 3.90 x 10~25 kg what is its kinctic cnergy. in electron volis?

A Lagrangian for a particular physical system can be wntten as
m S K
L= N (ai-z + 2bxy + cyz) -3 (ax2 +2bxy + cyz) ,

where a, b, and ¢ are arbitrary constants but subject to the condition that 52 — ac #0.
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19,

20.

21.

22,

23.

What are the equations of motion? Examme particularly the two casesa = 0 = ¢
and b = 0, ¢ = —a. What is the physical system described by the above Lagrangian?
Show that the usual Lagrangian for this system as defined by Eq. (1.57’) is related
to L' by a point transformation (cf. Derivation 10). What is the significance of the
condition on the value of % — ac?

Obtain the Lagrange equations of motion for a spherical pendulum, i.e., a mass point
suspended by a rigid weightless rod.

A particle of mass m moves in one dimension such that 1t has the Lagrangian

2.4
L= ml;— + mer(x) — Va(x),
where V is some differentiable function of x. Find the equation of motion for x(¢) and

describe the physical nature of the system on the basis of this equation

Two mass points of mass m1 and my are connected by a strng passing through a
hole in a smooth table so that s rests on the table surface and m hangs suspended.
Assaming mp moves only in a vertical line, what are the generalized coordinates lor
the system? Write the Lagrange equations for the system and, if possible, discuss
the physical significance any of them might have. Reduce the problem to a single
second-order differential equation and obtain a first integral of the equation. Wha is
its physical significance? (Consider the motion only until m reaches the hole.)

Obtain the Lagrangian and equations of metion for the double pendulum dlustratec in
Fig 1.4, where the lengths of the pendula are ; and I with comesponding masses »zy
and ms.

Obtain the equation of motion for a particle falling vertically under the influence of
gravity when frictional forces obtainable from a dissipation function %kv2 are present.
Integrate the equation to obtain the velocity as a function of nme and show that the
maximum possible velocity for a fall fromrest is v = mg/k.

. A spring of rest length L, (no tension) is connceted to a support at one end and has

a mass M attached at the other. Neglect the mass of the spring, the dimension of the
mass M, and assume that the motion 1s confined to a vertical plane. Also, assume that
the spring only stretches without bending but it can swing 1n the plane.

(a) Using the angular displacement of the mass from the vertical and the length that
the string has stretched from its rest length (hanging with the mass m), find La-
grange’s eqnations.

(b} Solve these equations for small stretching and angular displacements.

(¢ Solve the equations in part (a) to the next order in both stretching and angular
displacement. This part is amenable to hand calculations. Using some reasonable
assumplions about the spring constan, the mass, and the rest length, discuss the
motion. Is a resonance likely under the assumptions statec in the problem?

(d) (For analytic computer programs.) Consider the spring to have a total mass
m & M. Neglecting the bending of the spring, set up Lagrange’s equations
correctly to first order in m and the angular and linear displacements.

(&) (For numerical computer analysis.) Make sets of reasonable assumptons of the
constants 1n part (a) and make a single plot of the two coordinates as functions of
time.
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Variational Principles and
Lagrange’s Equations

2.1 @ HAMILTON’S PRINCIPLE

34

The derivation of Lagrange’s equations presented in Chapter | started from a
consideration of the instantaneous state of the system and small virtual displace-
ments about the instantaneous state, i.e., from a “differential principle” such as
D’ Alembert’s principle. It is also possible to obtain T.agrange’s equations from a
principle that considers the entire motion of the system between times 7} and £2,
and small virtual variations of this motion from the actual motion. A principle of
this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times #) and #,” must first be stated in more pre-
cise language The instantaneous configuration of a system is described by the
values of the n generalized coordinates gy, . . ., g,, and corresponds to a particu-
lar pomnt in a Cartesian hyperspace where the ¢’s form the n coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes on,
the state of the system changes and the system point moves in configuration space
tracing out a curve, described as “the path of motion of the system.” The “motion
of the system,” as used above, then refers to the motion of the system point along
this path in configuration space. Time can be considered formally as a parame-
ter of the curve; to each point on the path there is associated one or more values
of the time. Note that configuration space has no necessary connection with the
physical three-dimensional space, just as the generalized coordinates are not nec-
essarily position coordinates. The path of motion in configuration space has no
resemblance to the path in space of any actual particle; each point on the path
represents the entire system configuration at some given instant of time.

The integral Hamilton’s principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilton’s principle can be stated as

The maotion of the system from time 1) to time t; is such that the line
integral (called the action or the action integral),
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L7}
I=f Ldt, (2.1}
h

where L = T — V, has a stationary value for the actual path of the
motion.

That is, out of all possible paths by which the system point could travel from
its position at time f; to its position at time f, it will actually travel along that
path for which the value of the integral (2.1) is stationary. By the term “station-
ary value” for a line integral, we mean that the integral along the given path has
the same value to within first-order infinitcsimals as that along all neighboring
paths (L.e., those that differ from it by infinitesimal displacements). (Cf. Fig. 2.1.)
The notion of a stationary value for a line integral thus corresponds in ordinary
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral 7 for fixed t; and #; is zero:

i
51=af L@G1seeesGnrGlsenerdn,t)dt =0. 22)
n

Where the system constraints are holonomic, Hamilton’s principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Eqs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton's principle, as being the mors important theorem.
That Hamilton’s principle is a sufficient condition for deriving the equations of
motior enables us to construct the mechanics of monogenic systems from Hamil-
ton’s principle as the basic postulate rather than Newton’s laws of motion. Such
a formulation has advantages; e g, since the infegral 7 is obviously invariant to
the system of generalized coordinates used to express L, the equations of motion
must always have the Lagrangian form no matter how the generalized coordinates

X

FIGURE 2.1 Path of the system point in configuration space.
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are transformed. More important, the formulation in terms of a variational prin-
ciple 1s the route that is generally followed when we try to describe apparently
nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.

SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
calculus is to find the curve for which some given line integral has a stationary
value.

Consider first the problem in an essentially one-dimensional form: We have a
function f(y.y, x) defined on a path y = y(x) between two values x; and x3,
where ¥ is the derivative of y with respect to x. We wish to find a particular path
y(x) such that the line integral J of the function f between x| and x2,

]

Y=
x2

J=/ f(, 3. x)dx, 2.3
x1

has a stationary value relative to paths differing infinitesimally from the correct
function y(x). The variable x here plays the role of the parameter ¢, and we con-
sider only such varied paths for which y(x1) = y1, y(x2) = y2. (Cf. Fig. 2.2.)
Note that Fig. 2.2 does not represent configuration space. In the one-dimensional
configuration space, both the correct and varied paths are the segment of the
straight line connecting y; and y»; the paths differ only in the functional rela-
tion between y and x. The problem is one-dimensional. v is a function of x not a
coordinate.

y (xzxyz)

xry)

X

FIGURE 2.2 Varied paths of the function of y(x) in the one-dimensional extremum
ptoblem.
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We put the problem in a form that enables us to use the familiar apparatus of
the differential calculus for finding the stationary points of a function. Since J
must have a stationary value for the correct path relative to any neighboring path,
the variation must be zero relative to some particular set of neighboring paths
labeled by an infinitesimal parameter . Such a set of paths might be denoted by
y(x, ), with y(x, 0) representing the correct path. For example, if we select any
function n(x) that vanishes at x = x; and x = x3, then a possible set of varied
paths is given by

y(x, o) = y(x,0) + an(x). @24

For simplicity, it is assumed that both the correct path y(x) and the auxiliary
function 7{x) are well-behaved functions—continuous and nonsingular between
x1 and x7, with continuous first and second derivatives in the same interval. For
any such parametric family of curves, J in Eq. (2.3) is also a function of a:

X2
J(@) = f fO(x, @), y(x,a),x) dx. (2.5)
x)
and the condition for obtaining a stationary point is the familiar one that
dJ
(&) =0 .6)
dex a=0
By the usual methods of differentiating under the integral sign, we find that
dJ * (af day af oy
pud 2 2 4 L2 dx. 2.7
do _/,;, (3y30:+8)33a x @7)

Consider the second uf these integrals.

f"l 3f 8y f 8f 8%y
—_— dx = el dx
y, 0y da n 0y dxdo

Integrating by parts, the integral becomes

X2 2. X2 X2
f 8 &y 4 U -f i(a—’f)a—ydx. 2.8)
o 0y dxda dy da X x, dx \9y/ da

The conditions on all the varied curves are that they pass through the po:nts
(x1, y1), (x2, y2), and hence the partial derivative of y with respect to o at x; and
xp must vanish. Therefore, the first term of (2.8) vanishes and Eq. (2.7) reduces to

y_[(Lodiny,

do x, \dy dxdy/ da )
The condition for a stationary value, Eq. (2.6), is therefore equivalent to the equa-
tion
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*2 (9 da 0
f (_f _ __f) (_y) dx =0, 29
a \9dy dxdy/\da/,
Now, the partial derivative of y with respect to o occurring in Eq. (2.9) is a
function of x that is arbitrary except for continuity and end point conditions. For
example, for the particular parametric family of varied paths given by Eq. (2.4),

it is the arbitrary function n(x). We can therefore apply to Eq (2.9) the so-called
“fundamental lemma” of the calculus of variations, which says if

X2
/ M(@x)nx)dx =0 (2.10)
x|

for all arbitrary functions n(x) continuous through the second derivative, then
M (x) must identically vanish in the interval (xi, x2). While a formal mathemat-
ical proof of the lemma can be found in texts on the calculus of variations, the
validity of the lemma is easily seen intuitively. We can imagine constructing a
function 7 that is positive 1n the immediate vicinity of any chosen point in the
interval and zero everywhere else. Equation (2.10) can then hold only if M(x)
vanishes at that (arbitrarily) chosen point. which shows M must be zero through-
out the interval. From Eq. (2.9) and the fundamental lemma, it therefore follows
that J can have a stationary value only if

af d [(df
= ——{(=Z\=0. 211
dy dx (ay) 0 21D
The differential quantity,
(a_y) do = 8y, 212)
da J g

represents the infinitesimal departure of the varied path from the correct path j (x)
at the point x and thus corresponds to the virtual displacement introduced in Chap-
ter 1 (hence the notation 8y). Similarly, the infinitesimal variation of J about the
correct path can be designated

o

(d—J) doe=2§J. (2.13)
da Jo
The assertion that J is stationary for the correct path can thus be written

% (3f  d df
8] = = — — — }8ydx — (,
fxl (ay dxas») yex

requiring that y(x) satisfy the differential equation (2.11). The §-notation, intro-
duced through Eqs. (2.12) and (2.13), may be used as a convenient shorthand
for treating the variation of integrals, remembering always that it stands for the
manipulation of parametric families of varied paths such as Eq. (2.4).
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Some simple examples of the application of Eq. (2.11) (which clearly
resembles a Lagrange equation) may now be considered:

1. Shortest distance between two points in a plane. An element of length in a

plane is
ds = \/dx? + dy?

and the total length of any curve going between points 1 and 2 is
2 X2 2
1= [as= "1+ (2) o
1 x) dx

The condition that the curve be the shortest path is that / be a minimum. This is
an example of the extremum problem as expressed by Eq. (2.3), with

f= 1+ ).72.
Substituting in (2.11) with
f g H__ ¥
ady 8 1452
we have
d ¥y
dx \/1+ 52
or

where ¢ is constant. This solution can be valid only if
y=a,

where « is a constant related to ¢ by

C
a =

i

1-c¢

But this is clearly the equation of a straight line,

y=ax+b,
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where b is another constant of integration. Strictly speaking, the straight line has
only bezn proved to be an extremum path, but for this problem it is obviously also
a minimum. The constants of integration, ¢ and b, are determined by the condition
that the curve pass through the two end points, (x1. 1), (x2, y2).

In a similar fashion we can obtain the shortest distance between two points
on a sphere, by setting up the arc length on the surface of the sphere in terms of
the angle coordinates of position on the sphere In general, curves that give the
shortest distance between two points on a given surface are called the geodesics
of the surface.

2. Minimum surface of revolution. Suppose we form a surface of revolution
by taking some curve passing between two fixed end points (xy, y1) and (x2, y2)
defining the xy plane, andrevolving it about the y axis (cf. Fig. 2.3a). The problem
then is to find that curve for which the surface area is a minimum. The area of a
strip of the sutface is 27wx ds = 27x+/1 + y2 dx, and the total area is

2
27 f xy 1+ y2dx.
i
The extremum of this integral is again given by (2.11) where

F=x1+32
and

of o __xy

Wy 5 JitRn

Equation (2.11) becomes in this case

—X

FIGURE 2.3a Minimum sutface of revolution. Note that this figure is drawn for y; and
¥ having the same sign relative to the rotation axis. This is not assumed in the general
solution.
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i(x_i')zo
dx \ /142
or
x3
St

where a is some constant of integration clearly smaller than the minimum value
of x. Squaring the above equation and factoring terms, we have

7262 - a?) = a?,
or solving,

dy a

dx — JxZ g%

The general solution of this differential equation, in light of the nature of a, is

+b=aarccosh£+b
a

_af dx
¢ NS

or

b
x=acc)shy )
a

which is the equation of a catenary. Again the two constants of integration,  and
b, are determined in principle by the requirements that the curve pass through the
two given end points, as shown in Fig. 2.3b.

Curves satistying the preceding equation all scale as x/a and y/a with one
independent parameter b/a. This suggests that when the solutions are examined
in detail they turn out to be a great deal more complicated than these considera-

X35 ¥p)

(x1: )

a X

FIGURE 2.3b General catenary solution for minimum surface of revolution.
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tions suggest. For some pairs of end points, unique constants of integration ¢ and
b can be found. But for other end points, it is possible to draw two different cate-
nary curves through the end points, while for additional cases no possible values
can be found for @ and b. Further, recall that Eq. (2.11) represents a condition
for finding curves y(x) continuous through the second derivative that render the
integral stationary. The catenary solutions therefore do not always represent min-
imum values, but may represent “inflection points” where the length of the curve
is stationary but not minimum.,

For certain combinations of end points (an example is x1 and x2 both posi-
tive and both much smaller than y, — y;}, the absolute minimum in the surface
of revolution is provided (cf. Exercise 8) by a curve composed of straight line
segments—from the first end point parallel to the x axis until the y axis is reached,
then along the y axis until the point (0, y;) and then out in a straight line to the
second end point corresponding to the area 71'()«:12 + x%). This curve results when
a = 0, forcing either x = 0 or y = constant. Since this curve has discontinuous
first derivatives, we should not expect to find it as a solution to Eq. (2.11).

This example is valnable in emphasizing the restrictions that surround the
derivation and the meaning of the stationary condition. Exercises 7 and 8 exam-
ine the conditions for the pathological behavior for a symmetric example. More
information can be found in many texts on the calculus of variations.

3. The brachistochrone problem. (See Fig. 2.4a.) This well-known problem is
o find the curve joining two points, along which a particle falling from rest under
the influence of gravity travels from the higher to the lower point in the least time.

If v is the speed along the curve. then the time required to fall an arc length ds
is ds/v, and the problem is to find a minimum of the integral

2 ds
fio = —.
v

|

l 2

FIGURE 24a The brachistochrone problem.
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If v is measured down from the initial point of release, the conservation theorem
for the energy of the particle can be written as

1,2
MV° = mgy

or

= v2gy.

Then the expression for ¢)2 becomes

21+ y
Iy = X,
1 2gy
and f is identified as

2

14y
28y

f=

The integration of Eq. (2.11) with this form for f is straightforward and is left as
an exercise.
The solution in terms cf its one parameter, a, given by

Y 1 —cos [x +y(Q2a —y)]
a a ’

is sketched in Fig. 2.4b for the first cycle (0 < x < 2ma) and the beginning of the
second cycle. Three cases of solutions are indicated. A power-series expansion of
the solution for the limit y « a gives
T — x2 z
y= ) a.
The brachistochrone problem is famous in the history of mathematics, for it
was the analysis of this problem by John Bernoulli that led to the formal founda-
tion of the calculus of vanations.

X ¥ Ta 2ra
]
o N2 K2 X332 ¥,
2o+ -
K= 1N
3c
¥

FIGURE 2.4b Catenary solution to the brachistochrone problem showing positions on
the curve for the three cases 17 < 2, X2 = % y2, and x3 > yp
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DERIVATION OF LAGRANGE’S EQUATIONS
FROM HAMILTON'S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables );, and their derivatives
yi. (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

2
57 =5 f] £ 3206, 22 91 (0): F25)s - x) i, 2.14)

is obtained, as before, by considering J as a function of parameter ¢ that labels a
possible set of curves y; (x, @). Thus, we may introduce a by setting

y1(x, @) = y1(2, 0) + ani(x),
y2(x, @) = y2(x, 0) + anz(x), (2.15)

where y) (x, 0), y2(x, 0), etc., are the solutions of the extremum problem (o be
obtained) and 1,, 2, etc., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The variation of J 1 given in terms of

af 3 3f
— d = —du } dx. 2.16
“= fz(ay,aa 35, 50 ) @9
Again we integrate by parts the integral involved in the second sum of Eq. (2.16):

2af 3y A P oy d (9f )
- dx = - dx,
1 0y 0o dx v, Ba 1 o dx 0V

where the first term vanishes because all curves pass through the fixed end points.
Substituting in (2.16), 5J becomes

8f d of
8J = —— - ——— | én, dx, 2.17
fz,:(ay, dxay'r) e .
where, in analogy with (2.12), the variation 8y; is

J
Sys = (_&) da.
[2]v'4 0

Since the y variables are independent, the variations Jy; are independent {(e.g.,
the functions 7,(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that §J is zero
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requires that the coefficients of the §y; separately vanish:
— ————=0, i=12,...,n (2.18)

Equations (2.18) represent the appropriaie generalization of (2.11) to several
variables and are known as the Euler-Lagrange differential equations. Their so-
lutions represent curves for which the variation of an integral of the form given
in (2.14) vanishes. Further generalizations of the fundamental variational problem
are easily possible. Thus, we can take f as a function of higher derivatives ¥, ,
etc., leading to equations different from (2.18). Or we can extend it to cases where
there are several parameters x, and the integral is then multiple, with f also in-
volving as variables derivatives of y, with respect to each of the parameters x;.
Finally, 1t is possible to consider variations in which the end points are not held
fixed.

For present purposes, what we have derived here suffices, for the integral in
Hamilton’s principle,

2
I=/ L(g;,q,.1)dt, (2.19)
1

has just the form stipulated in (2.14) with the transformation
x—>1

B =>4
F, 5. x) = Lgi, G, 2).

In deriving Eqgs. (2.18), we assumed that the y, variables are independent. The
corresponding condition m connection with Hanulton’s principle is that the gen-
eralized coordinates ¢; be independent, which requires that the constraints be
holonomic. The Euler-Lagrange equations corresponding to the integral I then
become the Lagrange equations of motion,

and we have accomplished our original aim, to show that Lagrange’s equations
follow from Hamilton’s principle—for monogenic systems with holonomic con-
straints.

EXTENSION OF HAMILTON'’S PRINCIPLE
TO NONHOLONOMIC SYSTEMS

It is possible to extend Hamilton’s principle, at least in a formal sense, to cover
certain types of nonholonomic systems. In deriving Lagrange’s equations from
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either Hamilton’s or D’ Alembert’s principle, the requirement of holonomic con-
straints does not appear until the last step, when the variations ¢, are considered
as independent of each other, With nonholonomic systems the generalized coor-
dinates are not independent of each other, and it is not possible to reduce them
further by means of equations of constraint of the form f (g1, 42.....49x.1) =0.
Hence, it is no longer true that the g,’s are all independent.

Another difference that must be considered in treating the variational principle
is the manner in which the varied paths are constructed. In the discussion of Sec-
tion 2.2, we pointed out that 8y (or 8¢) represents a virtual displacement from a
point on the actual path to some point on the neighboring varied path. But, with
independent coordinates it is the final varied path that is significant, not how it is
constructed. When the coordinates are not independent, but subject to constraint
relations, it becomes important whether the varied path is or is not constructed by
displacements consistent with the constraints. Virtual displacements, in particular,
may or may not satisfy the constraints.

It appears that a reasonably straightforward treatment of nonholonomic sys-
tems by a variational principle is possible only when the equations of constraint
can be put in the form

fa(G1,-...qn 41-...4n) =0, (2.20)

when this can be done the constraints are called semi-holonomic. The index o
indicates that there may be more than one such equation. We will assume there
are m equations in all, i.e., ¢ = 1, 2, ....m. Equation (2.20) commonly appears
in the restricted form

> akdgr+au dt = 0. (2.20')
k

We might expect that the varied paths, or equivalently, the displacements con-
structing the varied path, should satisfy the constraints of Eq. (2.20). However, it
has been proven that no such varied path can be constructed unless Egs. (2.20)
are integrable, in which case the constraints are actually holonomic. A variational
principle leading to the correct equations of motion can nonetheless be obtained
when the varied paths are constructed from the actual motion by virtual displace-
ments.

The procedure for eliminating these extra virtual displacements is the method
of Lagrange underermined multipliers. If Eqs. (2.20) hold, then it is also true that

rofo =0, (2.21)
>

o=l

where the Ay, @ = 1, 2...., m, are some undetermined quantities, functions in
general of the coordinates and of the time ¢. In addition, Hamilton’s principle,

L
S f Ldt =0, (2.2)
|
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is assumed to hold for this semiholonomic system. Following the development of
Section 2.3, Hamilton's principle then implies that

2
JaL d oL
dt — — —— } &g, = 0. 2.22
/1 Ek:(BCIk . qu) 9k (2.22)

The variation cannot be taken as before since the gy are not independent; however,
combining (2.21) with (2.2) gives

b2 m
3/2 (L+Zkafa) dt =0 (2.23)
n

o=1

The variation can now be performed with the n 8¢, and m A, for m+n independent
variables. For the simplifying assumption that A, = 4,(z), the resulting equations
from 8¢, become*

d (8L AL
4 (8L oL 224
dr (aék) o = & (224)
where
= fy d [ofy drg 3y
=Y g | e J 2 ()| _Zallal 2,25
Qi ;[“[aqk dt(aqk)] a1 aq'k} @25

while the 8, give the equations of constraint (2.20), Equations (2.24) and (2.20)
together constitute n + m equations for n 4+ m unknowns. The system can now
be interpreted as an m + n holonomic system with generalized forces Q. The
generalization to Ay = Ay (g1, - ..+ Gn; §1, - - - » Gn; ) is straightforward.

As an example, let us consider a particle whose Lagrangian is

L=im (;ﬁ +3+ 52) —V(x,y.2) (2.26)
subject to the constraint

fE 3. ) =%y+ky=0 (2.27)

with k a constant. The resulting equations of motion are

" v 2. OV
" w .. 8V
my+)~x—kx+lx+—a;=0, (2.29)
V
mzZ + 8—— =0, (2.30)
0z

*). Ray, Amer. J. Phys. 34 (406-8), 1996.
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and the equation of constraint, (2.20), becomes
yx +ky=0.

In this process we have obtained more information than was originally sought.
Not only do we get the gi’s we set out to find, but we also get mA;’s. What is
the physical significance of the A;’s? Suppose we remove the constraints on the
system, but instead apply external forces @ in such a manner as to keep the
motion of the system unchanged. The equations of motion likewise remain the
same. Clearly these extra applied forces must be equal to the forces of constraint,
for they are the forces applied to the system so as to satisfy the condition of
constraint. Under the influence of these forces Q. the equations of motion are

1—8,5 _ 8L _ 0. (2.31)
dt ogr g
But these must be identical with Egs. (2.24). Hence, we can identify (2.25) with
Q. the generalized forces of constraint. In this type of problem we really do not
eliminate the forces of constraint from the formulation. They are supplied as part
of the answer.

Although it is not obvious, the version of Hamilton’s principle adopted here
for semiholonomic systems also requires that the constraints do no work in virtual
displacements. This can be most easily seen by rewriting Hamilton's principle in
the form

f2

12 2
] Ldt=8/ Tdt—S/ Udt =0. (2.32)
H I

fi

If the variation of the integral over the generalized potential is carried out by the
procedures of Section 2.3, the principle takes the form

n h aUu d (3U
Sf Tdt = f [— —— (-—)] Sqrdt; (2.33)
n t Zk: an dl aqk

or, by Eq. (1.58),

17) 2
) f Tdt=— / > Qwdqudr. (2.34)
H ook

In this dress, Hamilton’s principle says that the difference in the time integral of
the kinetic energy between two neighboring paths is equal to the negative of the
time integral of the work done in the virtual displacements between the paths.
The work involved is that done only by the forces derivable from the generalized
potential, The same Hamilton’s principle holds for both holonomic and semiholo-
nomic systems, it must be required that the additional forces of semiholonomic
constraints do no work in the displacements 8¢y This restriction parallels the ear-
lier condition that the virtual work of the forces of holonomic constraint also be
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zero (cf. Section 1.4). In practice, the restriction presents little handicap to the
applications, as many problems in which the semiholonomic formalism is used
relate to rolling without slipping, where the constraints are obviously workless.

Note that Eq. (2.20) is not the most general type of nonholonomic constraint;
e.g., it does not include equations of constraint in the form of inequalities. On
the other hand, it does include holonomic constraints. A holonomic equation of
constraint,

fla1,92.93, .- gn. 1) =0, (2.35)

is equivalent to (2.20) with no dependence on ¢x. Thus, the Lagrange multiplier
method can be used also for holonomic constraints when (1) it is inconvenient to
reduce all the ¢’s to independent coordinates or (2) we might wish to obtain the
forces of constraint.

As another example of the method, let us consider the following somewhat
trivial illustration—a hoop rolling, without slipping, down an inclined plane. In
this example, the constraint of “rolling” is actually holonomic, but this fact will
be immaterial to our discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitly in our choice of
generalized coordinates.

The two generalized coordinates are x, 6, as in Fig. 2.5, and the equation of
rolling constraint is

rdf = dx.

The kinetic energy can be resolved into kinetic energy of motion of the center
of mass plus the kinetic energy of motion about the center of mass:

T = 3Mi* + ;M6
The potential energy is
V =Mg(l - x)sing,

where { is the length of the inclined plane and the Lagrangian is

"~

9

FIGURE 2.5 A hoop rolling down an inclined plane.
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L=T-V
_M:e2+Mr292
T2 2

— Mg(l — x)sing. (2.36)

Since there is one equation of constraint, only one Lagrange multiplier A is
needed. The coefficients appearing in the constraint equation are:

ag =r,

ax = —] .
The two Lagrange equations therefore are

M% —Mgsing +1 =0, (2.37)
Mr%i — ar =0, (2.38)

which along with the equation of constraint,
rd =%, (2.39)

constitutes three equations for three unknowns, 8, x, .
Differentiating (2.39) with respect to time, we have

ré = x.
Hence, from (2.38)
Mx = A,
and (2.37) becomes
_ gsing
=—
along with
A= Mgsing
2
and
= gsing
0= T

Thus, the hoop rolls down the incline with only one-half the acceleration it would
have slipping down a frictionless plane, and the friction force of constraint is
A= Mgsing/2.
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2.5 W ADVANTAGES OF A VARIATIONAL PRINCIPLE FORMULATION

Although we can extend the original formulation of Hamilton’s principle (2.2) to
include some nonholonomic constraints, in practice this formulation of mechan-
ics is most useful when a Lagrangian of independent coordinates can be set up
for the system. The variational principle formulation has been justly described as
“elegant,” for in the compact Hamilton’s principle is contained all of the mechan-
ics of holonomic systems with forces derivable from potentials. The principle has
the further merit that it involves only physical quantities that can be defined with-
out reference to a particular set of generalized coordinates, namely, the kinetic
and potential energies. The formulation is therefore automatically invariant with
respect to the choice of coordinates for the system.

From the variational Hamilton’s principle, it is also obvious why the La-
grangian is always uncertain to a total time derivative of any function of the
coordinates and time, as mentioned at the end of Section 1.4. The time integral
of such a total derivative between points 1 and 2 depends only on the values of
the arbitrary function at the end points, As the variation at the end points is zero,
the addition of the arbitrary time derivative to the Lagrangian does not affect the
variational behavior of the integral.

Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are not normally considered in dynamics—such as
the elastic field, the electromagnetic field, and field properties of elementary
particles. Some of these generalizations will be considered later, but as three
simple examples of its application outside the usual framework of mechanics, let
us consider the cases of an RL circuit, an LC circuit, and coupled circuits.

We consider the physical system of a battery of voltage V in series with an
inductance L and a resistance of value R and choose the electric charge ¢ as
the dynamical variable. The inductor acts as the kinetic energy term since the
inductive effect depends upon the time rate of change of the charge. The resistor
provides a dissipative term and the potential energy is ¢ V. The dynamic terms in
Lagrange’s equation with dissipation (1.70) are

T=114% F=1R¢
and potential energy = ¢ V. The equation of motion is
V=Lj+Rg=LI+RI (2.40)

where | = ¢ is the electric current. A solution for a battery connected to the
circuit at time ¢ = 0 is

I=1Ip(1 — e R/Ey,

where Iy = V/R is the final steady-state current flow.
The mechanical analog for this is a sphere of radius ¢ and effective mass m’
falling in a viscous fluid of constant density and viscosity n under the force of
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gravity. The effective mass is the difference between the actual mass and the mass
of the displaced fluid, and the direction of motion is along the y axis. For this
system,

T=im's?, F=3anai’,

and potential energy = m’gy, where the frictional drag force, Fy = 6z nay, called
Stokes’ law, was given at the end of Section 1.5.
The equation of motion is given by Lagrange’s equations (1.70) as
m'g = m'$ + 6mnay.
Using v = y, the solution (if the motion starts from rest at ¢ = 0), is

v = v,(1 —e /%)

where T = m’/(6zna) is a measure of the time it takes for the sphere to reach
1/e of its terminal speed of vy = m’g/6m na.

Another example from electrical circuits is an inductance, L, in series with a
capacitance, C. The capacitor acts as a source of potential energy given by ¢2/C
where g is the electric charge. The Lagrangian produces the equation of motion,

. . g
Li+==0, 2.41
q+C 0 (2.41)

which has the solution
g = 4o Cos wpt,

where g is the charge stored in the capacitor at t = 0, and the assumption is that
no charge is flowing at t = 0. The quantity

1

viC

is the resonant frequency of the system.
The mechanical analog of this system is the simple harmonic oscillator de-
scribed by the Lagrangian L = %miz - %kxz, which gives an equation of motion,

mx +kx =0,
whose solution for the same boundary conditions is
X = Xp COS wyf with wg = Vk/m.

These two examples show that an inductance is an inertial term, the electrical
analog of mass. Resistance is the analog of Stokes’ law type of frictional drag,
and the capacitance term 1/ C represents a Hooke’s law spring constant, With this
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FIGURE 2.6 A system of coupled circuits to which the Lagrangian formulation can be
applied.

background, a system of coupled electrical circuits of the type shown in Fig. 2.6
has a Lagrangian of the form

2
q
J#k !
and a dissipation function
I .9
.7:2 EgquJ.

where the mutual inductance terms, M4, 4i, are added to take into account the
coupling between inductors. The Lagrange equations are

L,%% Z R D _p . (2.42)

d TR C,

where the E, () terms are the external emf’s.

This description of two different physical systems by Lagrangians of the same
form means that all the results and techniques devised for investigating one of the
systems can be taken over immediately and applied to the other. In this particular
case, the study of the behavior of electrical circuits has been pursued intensely
and some special techniques have been developed; these can be directly applied
to the corresponding mechanical systems. Much work has been done in formuiat-
ing equivalent electrical problems for mechanical or acoustical systems, and vice
versa. Terms hitherto reserved for electrical circuits (reactance, susceptance, etc.)
are now commonly found in treatises on the theory of vibrations of mechanical
systems.
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Additionally, one type of generalization of mechanics is due to a subtler form
of equivalence. We have seen that the Lagrangian and Hamilton’s principle to-
gether form a compact invariant way of obtaining the mechanical equations of
motion. This possibility is not reserved for mechanics only; in almost every field
of physics variational principles can be used to express the “equations of motion,”
whether they be Newton’s equations, Maxwell’s equations, or the Schridinger
equation. Consequently, when a variational principle is used as the basis of the for-
mulation, all such fields will exhibit, at least to some degree, a structural analogy.
When the results of experiments show the need for alterating the physical content
in the theory of one field, this degree of analogy has often indicated how similar
alterations may be carried out in other fields. Thus, the experiments performed
early in this century showed the need for quantization of both electromagnetic
radiation and elementary particles. The methods of quantization, however, were
first developed for particle mechanics, starting essentially from the Lagrangian
formulation of classical mechanics. By describing the electromagnetic field by a
Lagrangian and corresponding Hamilton’s variational principle, it is possible to
carry over the methods of particle quantization to construct a quantum electrody-
namics (cf. Sections 13.5 and 13.6).

CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

Thus far, we have been concerned primarily with obtaining the equations of mo-
tion, but little has been said about how to solve them for a particular problem
once they are obtained. In general, this is a question of mathematics. A system
of n degrees of freedom will have n differential equations that are second order
in time. The solution of each equation will require two integrations resulting, ail
told, in 2n constants of integration. In a specific problem these constants will be
determined by the initial conditions, i.e., the initial values of the ng ;’s and the
ng,’s. Sometimes the equations of motion will be integrable in terms of known
functions, but not always. In fact, the majority of problems are not completely
integrable. However, even when complete solutions cannot be obtained, it is often
possible to extract a large amount of information about the physical nature of the
system motion. Indeed, such information may be of greater interest to the physi-
cist than the complete solution for the generalized coordinates as a function of
time. It is important, therefore, to see how much can be stated about the motion
of a given system without requiring a complete integration of the problem.*

In many problems a number of first integrals of the equations of motion can be
obtained immediately; by this we mean relations of the type

flq.q2,....41.42, ..., t) = constant. (2.43)

*In this and succeeding sections 1t will be assumed, unless otherwise specified, the system 1s such that
its motion 1s completely described by a Hamilton’s principle of the form (2.2).
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which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

3L 3T 8V 3T _ 3 1 Yy r
3%, 0% 8% % 8% 2’"'("'“*'“')

=mixy = Pix.

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate g, shall be defined as

aL

p, =22 (2.44)
] aq]

The terms canonical momentum and conjugate momentum are often also used for
p,. Notice that if g; is not a Cartesian coordinate, p, does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g, the associated generalized
momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

L= omi? ~ Y ade) + Y e -

(g; here denotes charge) and the generalized momentum conjugate to x, is

iy = % =m X + q Ax, (2.45)
ax,
i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g, (although
it may contain the corresponding velocity ¢,), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,
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or

lJ}

dt =0,

which mean that

p; = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized mo-
mentum conjugate to a cyclic coordinate is conserved.

Note that the derivation of Eq. (2.46) assumes that ¢ is a generalized coordi-
nate; one that is linearly independent of all the other coordinates. When equations
of constraint exist, all the coordinates are not linearly independent. For exam-
ple. the angular coordinate @ is not present in the Lagrangian of a hoop roiling
without slipping in a horizontal plane that was previously discussed, but the angle
appears in the constraint equations rd6 = dx. As aresult, the angular momentum,
p¢ = mr28, 1s not a constant of the motion.

Equation (2.46) constitutes a first integral of the form (2.43) for the equations
of motion. It can be used formaily to eliminate the cyclic coordinate from the
problem, which can then be solved entirely in terms of the remaining general-
ized coordinates. Briefly, the procedure, originated by Routh, consists in modify-
ing the Lagrangian so that it is no longer a function of the generalized velocity
corresponding to the cyclic coordinate, but instead involves only its conjugate
momentum. The advantage in so doing is that p, can then be considered one of
the constants of integration, and the remaining integrations involve only the non-
cyclic coordinates. We shall defer a detailed discussion of Routh’s method until
the Hamiltonian formulation (to which it is closely related) is treated.

Note that the conditions for the conservation of generalized momenta are more
general than the two momentum conservation theorems previously derived. For
example, they furnish a conservation theorem for a case in which the law of ac-
tion and reaction is violated, namely, when electromagnetic forces are present.
Suppose we have a single particle in a field in which neither ¢ nor A depends on
x. Then x nowhere appears in L and is therefore cyclic. The corresponding canon-
ical momentum p, must therefore be conserved. From (1.63) this momentum now
has the form

Px = mi + qA, = constant. (2.47)

In this case, it is not the mechanical linear momentum mx that is conserved but
rather its sum with g A, .* Nevertheless, it should still be true that the conservation
theorems of Chapter 1 are contained within the general rule for cyclic coordinates;
with proper restrictions (2.46) should reduce to the theorems of Section 1.2.

¥]t can be shown from classical electrodynamics that under these conditions, 1.e., herther A nor ¢
depending on x, that g A is exactly the x-component of the electromagnetic linear momentum of the
field associated with the charge q.
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We first consider a generalized coordinate g,, for which a change dq, repre-
sents a translation of the system as a whole in some given direction. An example
would be one of the Cartesian coordinates of the center of mass of the system.
Then clearly g, cannot appear in T, for velocities are not affected by a shift in the
origin, and therefore the partial derivative of 7 with respect to ¢; must be zero.
Further, we will assume conservative systems for which V is not a function of the
velocities. so as to eliminate such complications as electromagnetic forces. The
Lagrange equation of motion for a coordinate so defined then reduces to

d aT av
—— =P, = —— = g! . 2.48
dr 8q, by aq, / (2.48)

We will now show that (2.48) is the equation of motion for the total linear
momentum, i.e., that Q, represents the component of the total force along the di-
rection of translation of g;, and p, is the component of the total linear momentum
along this direction. In general, the generalized force Q, is given by Eq. (1.49):

ar,
QJ - ,ZFl ° aq}-

Since dq,, corresponds to a translation of the system along some axis, the vectors
r.(g,) and r,(q, + dq,) are related as shown in Fig. 2.7. By the definition of a
derivative, we have

I, dg,)—r dg;
o Bl tde)-n(a) _da (2.49)
aql d(l1—>0 dq! dq.l

where n is the vnit vector along the direction of the translation. Hence,

QJ=ZF,-n=n~F,

which (as was stated) is the component of the total force in the direction of n. To
prove the other haif of the statement, note that with the kinetic energy in the form

FIGURE 2.7 Change in a position vector under translation of the system.
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T = -;- Zm,i‘f,

the conjugate momentum is

using Eq. (1.51). Then from Eq. (2.49)
p} =nN- Z m,V, N
12

which again, as predicted, is the component of the total system linear momentum
along n.

Suppose now that the translation coordinate g, that we have been discussing is
cyclic, Then ¢, cannot appear in V and therefore

av
oy =Q,;=0.
4,

But this is simply the familiar conservation theorem for linear momentum—that
if a given component of the total applied force vanishes, the corresponding com-
ponent of the linear momentum is conserved.

In a similar fashion, it can be shown that if a cyclic coordinate g, is such that
dq, corresponds to a rotation of the system of particles around some axis, then
the conservation of its conjugate momentum corresponds to conservation of an
angular momentum. By the same argument used above, T’ cannot contain g, for
a rotation of the coordinate system cannot affect the magnitude of the velocities.
Hence, the partial derivative of T with respect to g, must again be zero, and since
V is independent of ¢;, we once more get Eq. (2.48). But now we wish to show
that with g, a rotation coordinate the generalized force is the component of the
total applied torque about the axis of rotation, and p, is the component of the total
angular momentum along the same axis.

The generalized force @, is again given by

ar,
Q = K, - »
! ,Z " 8q

only the derivative now has a different meaning. Here the change in g; must cor-
respond to an infinitesimal rotation of the vector r;, keeping the magnitude of
the vector constant. From Fig. 2.8, the magnitude of the derivative can easily be
obtained:

|dr;| = r;sinf dg,
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-~
——

ri(ql +d‘l,)

FIGURE 2.8 Change of a position vector under rotation of the system.

and

= r,sind,

' ar,
dq,

and its direction is perpendicular to both r, and n. Clearly, the derivative can be
written in vector form as

M nxr. (2.50)

dg,
With this result, the generalized force becomes

0,=> F-nxr,

1
= Z n.r, x F,,
I
reducing to

Qj=n-Y N;=n-N,
1

which proves the first part. A similar manipulation of p, with the aid of Eq. (2.50)
provides proof of the second part of the statement:

aT ar
P g, T LMY g, T 2L E X = ) Li=n-L

1
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Summarizing these results, we see that if the rotation coordinate g, is cyclic,
then Q,, which is the component of the applied torque along m, vanishes, and
the component of L along n is constant. Here we have recovered the angular
momentum conservation theorem out of the general conservation theorem relating
to cyclic coordinates.

The significance of cyclic translation or rotation coordinates in relation to the
properties of the system deserves some comment at this point. If a generalized co-
ordinate corresponding to a displacement is cyclic, it means that a translation of
the system, as if rigid, has no effect on the problem. In other words, if the system
is tnvarignt under translation along a given direction, the corresponding linear
momentum is conserved. Similarly, the fact that a generalized rotation coordinate
is cyclic (and therefore the conjugate angular momentum conserved) indicates
that the system is invariant under rotation about the given axis. Thus, the momen-
tum conservation theorems are closely connected with the symmetry properties
of the system. If the system is spherically symmetric, we can say without further
ado that all components of angular momentum are conserved. Or, it the system is
symmetric only about the 7 axis, then only L, will be conserved, and so on for
the other axes. These symmetry considerations can often be used with relatively
complicated problems to determine by inspection whether certain constants of the
motion exist. (¢f. Noether’s theoremm—3Sec. 13.7.)

Suppose, for example, the system consists of a set of mass points moving in
a potential field generated by fixed sources uniformly distributed on an infinite
plane, say, the z = O plane. (The sources might be a mass distribution if the forces
were gravitational, or a charge distribution for electrostatic forces.) Then the sym-
metry of the problem is such that the Lagrangian is invariant under a translation
of the system of particles in the x- or y-directions (but not in the z-direction) and
also under a rotation about the z axis. It immediately follows that the x- and y-
components of the total linear momentum, Py and Py, are constants of the motion
along with L., the z-component of the total angular momentum. However, if the
sources were restricted only to the half plane, x > 0, then the symmetry for trans-
lation along the x axis and for rotation about the 7 axis would be destroyed. In that
case, Py and L; could not be conserved, but P, would remain a constant of the
motion. We will encounter the connections between the constants of motion and
the symmetry properties of the system several times in the following chapters.

ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangian for-
mulation is the conservation of total energy for systems where the forces are
derivable from potentials dependent only upon position. Indeed, it is possible to
demonstrate a conservation theorem for which conservation of total energy repre-
sents only a special case. Consider a general Lagrangian, which will be a function
of the coordinates g, and the velocities g, and may also depend explicitly on the
time. (The explicit time dependence may arise from the time variation of external
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potentials, or from time-dependent constraints.) Then the total time derivative of
Lis

L oL dqj aL dq, aL
— = . 251
Z dq, dt Z dg, dt ‘t 2>1)

aL 4 (AL
aqj_dt aq, )’

and (2.51) can be rewritten as

dL  ~~d (3L, oL dg, oL
dt_zdt( )q’+] 3g, ar T

From Lagrange’s equations,

or

It therefore follows that
d alL aL
ar (ZJ 154, ) T (2.52)

The quantity in parentheses is oftentimes called the energy function* and will be
denoted by A:

h(q14----q.n; q.ls'- ’CIn, t)—'Z(IJ__L (2.53)

and Eq. (2.52) can be looked on as giving the total time derivative of A:

ﬁ}l = aL (2.54)
dt az

If the Lagrangian is not an explicit function of time, i.e., it ¢ does not appear
in L explicitly but only implicitly through the time variation of g and g, then
Eq. (2.54) says that 4 is conserved. It is one of the first integrals of the motion and
is sometimes referred to as Jacobi’s integral.’

*The energy function # is identical in value with the Hamiltonian H (See Chupter 8) Tt 1s given
a different name and symbol here 1o emphasize that 4 15 considered a function of n independent
variables g; and their time derivatives ¢; (along with the tme), whereas the Hanultonian will be
treated as a function of 2n mdependent vanables, g, p; (and possibly the time)

¥This designation 18 most often confined to a first integral in the restncted three-body problem. How-
ever, the integral there is merely a special case of the energy function 4, and there is some histoncal
precedent to apply the name Jacobi integral to the more general sitvation
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Under certain circumstances, the function % is the total energy of the system.
To determine what these circumstances are, we recall that the total kinetic energy
of a system can always be written as

T=To+1T)+ 71, (1.73)

where T is a function of the generalized coordinates only, T; (g, ¢) is linear in the
generalized velocities, and T>(q, ¢) is a quadratic function of the §’s. For a very
wide range of systems and sets of generalized coordinates, the Lagrangian can be
similarly decomposed as regards its functional behavior in the g variables:

L(g.g.1)=Lo(g.0)+ Li1(g.4.1) + La(g. 4. ). (2.55)

Here L, is a homogeneous function of the second degree (not merely quadratic)
in g, while L is homogeneous of the first degree in 4. There is no reason intrinsic
to mechanics that requires the Lagrangian to conform to Eqg. (2.55), but in fact it
does for most probiems of interest. The Lagrangian clearly has this form when the
forces are derivable from a potential not involving the velocities. Even with the
velocity-dependent potentials, we note that the Lagrangian for a charged particle
in an electromagnetic fieid, Eq. (1.63), satisfies Eq. (2.55). Now, recall that Euler’s
theorem states that if f is a homogeneous function of degree » in the variables x,,
then

af
lzx,-E = nf. (2.56)

Applied to the function 4, Eq. (2.53), for the Lagrangians of the form (2.55), this
theorem implies that

h=2Lr+L;—L=1"Ly— Lg. (2.57)

If the transformation equations defining the generalized coordinates, Egs. (1.38),
do not involve the time explicitly, then by Egs. (1.73) T = T5. If, further, the
potential does not depend on the generalized velocities, then L = T and Lo =
-V, so that

h=T+V=E, (2.58)

and the energy function is indeed the total energy. Under these circumstances,
if V does not involve the time explicitly, neither will L. Thus, by Eq. (2.54), A
(which is here the total energy), will be conserved.

Note that the conditions for conservation of & are in principle quite distinct
from those that identify 4 as the total energy. We can have a set of generalized
coordinates such that in a particular problem £ is conserved but is not the total
energy. On the other hand, z can be the total energy, in the form T + V, but not
be conserved. Also note that whereas the Lagrangian is uniquely fixed for each
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system by the prescription
L=T-U

independent of the choice of generalized coordinates, the energy function # de-
pends in magnitude and functional form on the specific set of generalized co-
ordinates. For one and the same system, various energy functions % of different
physical content can be generated depending on how the generalized coordinates
are chosen.

The most common case that occurs in classical mechanics is one in which the
kinetic energy terms are all of the form mq,? [2or p,? /2m and the potential energy
depends only upon the coordinates. For these conditions, the energy function is
both conserved and is also the total energy.

Finally, note that where the system is not conservative, but there are frictional
forces derivable from a dissipation function F, it can be easily shown that F is re-
lated to the decay rate of 4. When the equations of motion are given by Eq. (1.70),
including dissipation, then Eq. (2.52) has the form

dh 4L aF .
@t~ g,

By the definition of F, Eq. (1.67), it is a homogeneous function of the ¢’s of
degree 2. Hence, applying Euler’s theorem again, we have

ﬂ=_2 aL

o s (2.59)

If L is not an explicit function of time, and the system is such that 4 is the same
as the energy, then Eq. (2.59) says that 2.F is the rate of energy dissipation,

dE
—_= 2 -
T F, (2.60)

a statement proved above (cf. Sec. 1.5) in less general circumstances.

DERIVATIONS

1. Complete the solution of the brachistochrone problem begun in Section 2.2 and show
that the desired curve is a cycloid with a cusp at the ininial point at which the particle
is released. Show also that if the particle is projected with an initial kinetic ensrgy
%mv% that the brachistochrone is still a cycloid passing through the two points with a

cusp at a height z above the initial point given by v(z) =2gz.

2. Show that if the potenuial in the Lagrangian contamns velocity-dependent terms. the
canonical momentum corresponding to a coordinate of rotation # of the entire system
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is no longer the mechanical angular momentum Lg but 1s given by

ps=Lg—) n-r, x Vy,U,
1

where Vy 1s the gradient operator in which the derivatives are with respect to the
velocity components and n is a unit vector in the direction of rotation. If the forces are
electromagnetic in character. the canonical momentum is thersfore

9
Po =L9+lZn-r, X ?A,-.
Prove that the shortest distance between two points m space is a straight line.

Show that the geodesics of a spherical surface are great circles, i.e., circles whose
centers he at the center of the sphere.

EXERCISES

5.

8‘

A particle 18 subjected to the potential V(x) = —Fx, where F 15 a constant. The
particle travels from x = 0 to x = a m a tume interval fy. Assume the motion of the
particle can be expressed in the formx(r) = A+ Br+C t2. Find the values of A, B,
and C such that the action is a minimum.

. Find the Evler-Lagrange equation describing the brachistochrone curve for a particle

moving inside a spherical Earth of uniform mass density. Obtain a first integral for
this differential equation by analogy to the Jacobr mtegral #. With the help of this
ntegral, show that the desired curve 15 a hypocycloid (the curve described by a point
on a circle rolling on the inside of a larger circle). Obtain an expression for the time
of travel along the brachistochrone between two points on Earth’s surface. How long
would 1t take to go from New York to Los Angeles (assuined to be 4800 km apart on
the surface) along a brachistochrone tunnel (assuming no friction) and how far below
the surface would the deepest point of the tunnel be?

In Example 2 of Section 2.1 we considered the problem of the mmimum surface of
revolution. Examine the symmetric case x; = x, y2 = —y] > 0, and express the
condition for the parameter a as a transcendental equation in terms of the dimension-
less quantities £ = xo/a, and o = y/x3. Show that for & greater than a certam value
ag lwo values of & are possible, for @ = @ only one value of k is possible, while if
o < ap no real value of k (or ) can be found, so that no catenary solution exists 1n
this region. Find the value of ap, numerically if necessary.

The broken-segment solution described in the text (cf. p. 42), in which the area of
revolution is only that of the end circles of radius y; and yj, respectively, is known as
the Goldschmidt solution. For the symmetric situation discussed in Exercise 7, obtain
an expression for the ratio of the area generated by the catenary solutions to that given
by the Goldschmidt solution. Your result should be a function only of the parameters
k and «. Show that for sufficiently large values of « at least one of the catenaries
gives an area below that of the Goldschmidt solution. On the other hand, show that if
a = w, the Goldschmidt solution gives a lower area than the catenary.
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9.

10.

11.

12.

A chain or rope of indefinite length passes freely over pulleys at heights y; and y,
above the plane surface of Earth, wath a horizontal distance x; — x| between them. If
the chain or rope has a umform linear mass density, show that the problem of finding
the curve assumed betrween the pulleys is identical with that of the problem of mini-
mum surface of revolution. (The transition to the Goldschmidt solution as the heights
¥ and y; are changed makes for a striking lecture demonstration. See Exercise 8.)

Suppose it is known expenmentally that a particle fell a given distance y; m a time
fo = /2yn/g, but the times of fall for distances other than yg 1s not known. Suppose
further that the Lagrangian for the problem is known, but that instead of solving the
equanon of motion for y as a function of ¢, it is guessed that the functional form is

y = at + b2,

If the constants a and b are adjusted always so that the time to fall yp is correctly
given by #g, show directly that the integral

1o
f Ldt
0

1s an extremum for real values of the coefficients only whena =0 and b = g/2.

When two billiard balls colhde, the instantaneous forces between them are very large
but act only in an infintesumal time A, in such a manner that the quantity

f Fdt
At

remains finite. Such forces are described as impulsive forces, and the integral over
At 15 known as the impuise of the force. Show that if impulsive forces are present
Lagrange’s equations may be transformed into

(3_L) _(ﬂ) =5
%,/ ; \dg;); "V

where the subscripts { and f refer to the state of the system before and after the
impulse, S, is the impulse of the generalized impulsive force corresponding to g,
and L is the Lagrangian including all the nonimpulsive forces.

The term generulized mechanics has come to designate a variety of classical mechan-
ics in which the Lagrangian contains time derivatives of g, higher than the first. Prob-
lems for which x = f(x, X, X, ) have been referred to as “jerky” mechanics. Such
equations of motion have interesting applications in chaos theory (cf. Chapter 11). By
applying the methods of the calculus of variations, show that if there 1s a Lagrangian
of the form L(g,, §;. §,.t), and Hamilton’s principle holds with the zero vatiation of
both g; and g, at the end points, then the corresponding Euler-Lagrange equations are

d® (8L d (3L oL
— | —=)——{— + — = 0. i=1,2,.., .
dr? (3‘]r) di (aQI) 4 "

Apply this result to the Lagrangian
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13.

14.

15.

16.

17,

L= m . k 2

Do you recognize the equations of motion?

A heavy particle 1s placed at the top of a vertical hoop. Calculate the reaction of
the hoop on the particle by meuns of the Lagrange’s undetermined multipliers and
Lagrange’s equations. Find the height at which the particic falls off.

A umform hoop of mass m and radus r rolls without slipping on a fixed cylinder
of radius R as shown in the figure. The only external force is that of gravity. If the
smaller cylinder starts rolling from rest on top of the bigger cylinder, use the method
of Lagrange mulipliers to find the point at which the hoop falls off the cylinder,

A form of the Whealstone impedance bridge has, in addition to the usual four resis-
tances. an inductance in one arm and a capacitance in the opposite arm. Set up L and
F for the unbalanced brdge. with the charges in the elements as coordinates. Using
the Karchhott junction conditions as constraints on the currents, oblamn the Lagrange
equations of motion, and show that ehminating the A’s reduces these to the usual net-
work equations.

In certain situations, particularly one-dimensional systems, 1t 18 possible (o incorpo-
rate frictional effects without introducing the dissipation function. As an example, find
the equations of motion for the Lagrangian

L =e¥f T_CI_Z._E
2 2 )

How would you describe the system? Are there any constants of motion? Suppose a
point transformation is made of the form

s=e"g.

What 1s the effective Lagrangian in terms of s? Find the equation of motion for .
What do these results say about the conserved quantities for the system?

It sometimes occuss that the generalized coordinates appear separately in the kinetic
energy and the potential energy in such a manner that T and V may be written in the
form

T=Y fig)g and V=) Vg
3 I
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18.

19.

20.

Show that Lagrange’s equations then separate, and that the problem can always be
reduced to quadratures.

A point mass is constrained to move on a massless hoop of radius a fixed 1n a vertical
plane that rotates about its vertical symmetry axis with constant angular speed w.
Obitain the Lagrange equations of motion assuming the only external forces arise from
gravity. What are the constants of motion? Show that if e 18 greater than a critical
value wp, there can be a solution m which the particle remains stationary on the hoop
at a point other than at the bottom, but that 1f & < wy, the only stationary point for the
particle is at the botiom of the houp. What is the value of wy?

A particle moves without friction in a conservative field of force produced by various
mass distributions. In each instance, the force generated by a volume element of the
distribution is derived from a potential that 1s proportional to the mass of the volume
element and 15 a function only of the scalar distance from the volume element. For the
following fixed, homogeneous mass distributions, state the conserved quantities in the
motion of the particle:

(a) The mass 1s uniformly distributed 1o the plane z = 0.
(b) The mass 1s uniformly distributed in the half-plane z = 0,3 > 0.

() The mass 18 umformly distnibuted in a circular cylinder of infimte length, with
axis along (he z axis.

(d) The mass 15 umiformly distnibuted in a circular cylinder of finite length, with axis
along the z axis.

(e) The mass 1s nuformly distributed in a right cylinder of elliptical cross section and
infinute length. wath axis along the z axis.

(f) The mass 15 umiformly distributed in a dumbbell whose axis is oriented along the
Z axis.

(g) The mass 1s 1 the form of a uniform wire wound in the geomelry of an infinite
helical solenoid, with axis along the z axis

A particle of mass m slides without friction on a wedge of angle & and mass M that can
move without friction on a smooth honzontal surface, as shown in the figure. Treating
the constraint of the particle on the wedge by the method of Lagrange multipliers,
find the equations of motion for the particle and wedge. Also obtain an expression for
the forces of constraint. Calculate the work done in time ¢ by the forces of constraint
acting on the particle and on the wedge. What are the constants of motion for the
system? Contrast the resvlts you have found with the situation when the wedge 1s
fixed. | Suggestion: For the particle you may either use a Cartesian coordinate system
with y vertical, or one with y normal to the wedge or. even more instructively, do it in
both systems.]
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21.

22

A carriage runs along rails on arigid beam, as shown in the figure below. The carnage
is attached to one end of a spring of equilibrium length ry and force constant k, whose
other end is fixed on the beam. On the carnage, another set of rails 1s perpendicular (o
the first along which a particle of mass m moves, held by a spring fixed on the beam,
of force constant k and zero equilibrium length. Beam, rails, springs, and carriage are
assumed (o have zero mass. The whole system is forced to move in a plane about the
point of attachment of the first spring, with a constant angular speed w. The length of
the second spring is at all tames considered small compared to rg.

(a) What is the energy of the system? Is 1t conserved?
(b) Using generalized coordinates in the laboratory system, what is the Jacobi integral
for the system? Is it conserved?

() Interms of the generahved coordinates relative to a system rotating with the angu-
lar speed . what is the Lagrangian? What is the Jacobi integral? Is it conserved?
Discuss the relationship between the two Jacobi integrals.

Suppose a particle moves in space subject to a conservalive potential V(r) bul 15
constrained to always move on a surface whose equation is o (r, £) = 0. (The explicit
dependence on ¢ indicates that the surface may be moving.} The instantaneous force of
constraint is taken as always perpendicular to the surface. Show analytically that the
energy of the particle is not conserved If the surface moves in time. What physically
is the reason for nonconservation of the energy under this circumstance?

Consider two particles of masses m and m5. Let 1 be confined to move on a circle
of radius ¢ 1n the z = 0 plane, centered at x = y = 0. Let m; be confined (o move
on a circle of radius b in the z = ¢ plane, centered at x = y = 0. A light (massless)
spring of spring constant k 1s attached between the two particles.

(a) Find the Lagrangian for the system.

(b) Solve the problem using Lagrange multipliers and give a physical interpretation
for each mnultiplier.

The one-dimensional harmonic oscillator has the Lagrangian L = mx? /2 — kx/2.
Suppose you did not know the solution to the motion, but realized that the motion
must be periodic and therefore could be described by a Founer senes of the form

x(t) = Za] Cos jwt,
J=0
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25,

26.

(taking ¢ = O at a turning point) where w is the (unknown) angular frequency of the
motion. This representation for x(+) defines a many-parameter path for the system
point in configuration space. Consider the action integral / for two points, #) and 2,
separated by the period T = 25 /. Show that with this form for the system path, { is
an extremum for nonvanishing x only if @, = 0, for j # 1, and only if w? =k/m.

A disk of radms R rolls without slipping inside the stationary parabola y = ax2. Find
the equations of constraint. What condition allows the disk to roll so that it touches
the parabola at one and only one point independent of its position?

A particle of mass m 1s suspended by a massless spring of length L. It hangs, without
inittal monion, in a gravitational field of strength g. It is struck by an impulsive hor-
1zontal blow, which introduces an angular velocity w. If w 1s sufficiently small, it is
obvious that the mass moves as a simple pendulum. If w is sufficiently large, the mass
will rotate about the support. Use a Lagrange multipher to deternmne the conditions
under which the string becomes slack at some point 1n the motion.
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The Central Force Problem

In this chapter we shall discuss the problem of two bodies moving under the in-
fluence of a mutual central force as an application of the Lagrangian formulation.
Not all the problems of central force motion are integrable in terms of well-known
functions. However, we shall attempt to explore the problem as thoroughly as is
possible with the tools already developed. In the last section of this chapter we
consider some of the complications that follow by the presence of a third body.

REDUCTION TO THE EQUIVALENT ONE-BODY PROBLEM

Consider a monogenic system of two mass points, m and ma (cf. Fig. 3.1), where
the only forces are those due to an interaction potential U. We will assume at first
that U is any function of the vector between the two particles, r; — ry, or of their
relative velocity, F2 — Ij, or of any higher derivatives of r, — r;. Such a system
has six degrees of freedom and hence six independent generalized coordinates.
We choose these to be the three components of the radius vector to the center of
mass, R, plus the three components of the difference vector r = r — ry. The
Lagrangian will then have the form

L=TR,F)—U(r.¥F,...). @3.1)

m

FIGURE 3.1 Coordinates for the two-body problem.
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The Kkinetic energy T can be written as the sum of the kinetic energy of the
motion of the center of mass, plus the kinetic energy of motion about the center
of mass, T':

T=4m +m)R+ 7
with
n

1 =12 1 -
T = ML) + smaky.

Here 1| and 1/, are the radii vectors of the two particles relative to the center of
mass and are related to r by

my

r’l =—-——",

my + ma

m
rh=————r 3.2
2 my +m; (

Expressed in terms of r by means of Eq. (3.2), T takes on the form

'_1Mi—2
2my +mp

and the total Lagrangian (3.1) is

o1
L= Maps L MM o Gk ) (3.3)
2 2m) +my

It is seen that the three coordinates R are cyclic, so that the center of mass
is either at rest or moving uniformly. None of the equations of motion for r will
contain terms involving R or R. Consequently, the process of integration is par-
ticularly simple here. We merely drop the first term from the Lagrangian in all
subsequent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of force with a single particle at a distance r from it, having a mass

myma

=0 34
m) 4+ m G4

where u is known as the reduced mass. Frequently, Eq. (3.4) is written in the form

= — 4 —. (3.5)
ho om o ma

Thus, the central force motion of two bodies about their center of mass can always
be reduced to an equivalent one-body problem.
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THE EQUATIONS OF MOTION AND FIRST INTEGRALS

We now restrict ourselves to conservative central forces, where the potential is
V(r), a function of r only, so that the force is always along r. By the results of
the preceding section, we need only consider the problem of a single particle of
reduced mass m moving about a fixed center of force, which will be taken as the
origin of the coordinate system. Since potential energy involves only the radial
distance, the problem has spherical symmetry; i.e., any rotation, about any fixed
axis, can have no effect on the solution. Hence, an angle coordinate representing
rotation about a fixed axis must be cyclic. These symmetry properties result in a
considerable simplification in the problem.

Since the problem is spherically symmetric, the total angular momentum vec-
tor,

L=rxp,

is conserved. It therefore follows that r is always perpendicular to the fixed direc-
tion of L in space. This can be true only if r always lies in a plane whose normal
is parallel to L. While this reasoning breaks down if L is zero, the motion in that
case must be along a straight line going through the center of force, for L = 0
requires r to be parallel to F, which can be satisfied only in straight-line motion.*
Thus, central force motion is always motion in a plane.

Now, the motion of a single particle in space is described by three coordinates;
in spherical polar coordinates these are the azimuth angle 8, the zenith angle (or
colatitude) v, and the radial distance r. By choosing the polar axis to be in the
direction of L, the motion is always in the plane perpendicular to the polar axis.
The coordinate ¥ then has only the constant value 7 /2 and can be dropped from
the subsequent discussion. The conservation of the angular momentum vector fur-
nishes three independent constants of motion (corresponding to the three Carte-
sian components). In effect, two of these, expressing the constant dtrection of the
angular momentum, have been used to reduce the problem from three to two de-
grees of freedom. The third of these constants, corresponding to the conservation
of the magnitude of L, remains still at our disposal in completing the solution.

Expressed now in plane polar coordinates, the Lagrangian is

L=T-V
= sm(F* +r?6%) — V(). (3.6)

As was forseen, 6 is a cyclic coordinate, whose corresponding canonical momen-
tum is the angular momentum of the system:
aL .
Pop=—= mr26.
ag

*Formally ¥ = in, + réng, hence r x i = 0 requires 6 = 0.
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One of the two equations of motion is then simply

pe = j—t (mr26) =o0. 37
with the immediate integral
mr2f =1. (3.8)
where [ is the constant magnitude of the angular momentum. From (3.7) is also
follows that
a4 (%rzé) —0. (39)

The factor % is inserted because %rzé is just the areal velocity—the area swept

out by the radius vector per unit time. This interpretation follows from Fig. 3.2,
the differential area swept out in time dt being

dA = ir(r do),

and hence
dA 1 ,d6
— = 7=,
dt 2 dt
The conservation of angular momentum is thus equivalent to saying the areal
velocity is constant. Here we have the proof of the well-known Kepler’s second
law of planetary motion: The radius vector sweeps out equal areas in equal times.

It should be emphasized however that the conservation of the areal velocity is a
general property of central force motion and is not restricted to an inverse-square

law of force.
rd@ '

de

FIGURE 3.2 The area swept out by the radius vector m a time d:.
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The remaining Lagrange equation, for the coordinate r, is

”

d b, BV
E(mr) — mré* + = 0. (3.10)

Designating the value of the force along r, —3V /dr, by f(r) the equation can be
rewritten as

m¥ — mré? = f(r). (3.11)

By making use of the first integral, Eq. (3.8), 6 can be eliminated from the equa-
tion of motion, yielding a second-order differential equation involving r only:

12
mi — — = ). (3.12)
mr-

There is another first integral of motion available, namely the total energy,

since the forces are conservative. On the basis of the general energy conservation
theorem, we can immediately state that a constant of the motion is

E=4im(#+r*%) + v (), (3.13)

where E is the energy of the system. Alternatively, this first mtegral could be
derived again directly from the equations of motion (3.7) and (3.12). The latter

can be written as
d 1 12
Fr=——|V4+-——1]. 3.14
mr dr ( + 2mr2) 314

If both sides of Eq. (3.14) are multiplied by 7 the left side becomes

=4 (L
m _dlf 2m .

The right side similarly can be written as a total time derivative, for if g(r) is any
function of ¢, then the total time derivative of g has the form

Hence, Eq. (3.14) is equivalent to
d (1 , d 1 12
Him? = (Ve ——
dr (zm’ ) dr ( + 2mr2)

d {1 12 ‘
— (—mi-2+ s+ v) =0,

or

dr \2 2 mr?
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and therefore

1 ., 11
—mF 4+ - — = . 3.15
2mr + > w2 + V = constant { )
Equation (3.15) is the statement of the conservation of total energy, for by us-
ing (3.8) for /, the middle term can be writien
12 1 . 292
ISL S R I
2mr*  2mr 2

and (3.15) reduces to (3.13).

These first two integrals give us in effect two of the quadratures necessary to
complete the problem, As there are two variables, » and 6, a total of four inte-
grations are needed to solve the equations of motion. The first two integrations
have left the Lagrange equations as two first-order equations (3.8) and (3.15); the
two remaining integrations can be accomplished (formally) in a variety of ways.
Perhaps the simplest procedure starts from Eq. (3.15). Solving for 7, we have

) 2 12
r_\/; (E_V_Zmrz)’ (3.16)

dt = ar . G.17)

EICRED

At time t = 0, let r have the initial value r¢. Then the integral of both sides of the
equation from the initial state to the state at titne 7 takes the form

or

(3.18)

i=[ = .
R (V- )

As it stands, Eq. (3.18) gives / as a function of r and the constants of integration
E, 1. and ry. However, 1t may be inverted, at least formally, to give r as a function
of ¢t and the constants. Once the solution for r is found, the solution 6 follows
immediately from Eq. (3.8), which can be writien as

_ ldt

df = —.
mr?

(3.19)

If the initial value of 9 is 6y, then the integral of (3.19) is simply

Pode
6=1 8. 3.20
]o T + 6o (3.20)
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Equations (3.18) and (3.20) are the two remaining integrations, and formally
the problem has been reduced to quadratures, with four constants of integration E,
1, rg, 6p. These constants are not the only ones that can be considered. We might
equally as well have taken rg, 8, o, 6o, but of course E and / can always be deter-
mined in terms of this set. For many applications, however, the set containing the
energy and angular momentum is the natural one. In quantum mechanics, such
constants as the initial values of » and 8, or of # and 8, become meaningless. but
we can still talk in terms of the system energy or of the system angular momen-
tum. Indeed, two salient ditferences between classical and quantum mechanics
appear in the properties of E and / in the two theories. In order to discuss the
transition to quantum theories, it is therefore important that the classical descrip-
tion of the system be in terms of its energy and angular momentum.

THE EQUIVALENT ONE-DIMENSIONAL PROBLEM,
AND CLASSIFICATION OF ORBITS

Although we have solved the one-dimensional problem formally, practically
speaking the integrals (3.18) and (3.20) are usually quite unmanageable, and in
any specific case it is often more convenient to perform the integration in some
other fashion. But before obtaining the solution for any specific force laws, let
us see what can be learned about the motion in the general case, using only the
equations of motion and the conservation theorems, without requiring explicit
solutions.

For example, with a system of known energy and angular momentum, the mag-
nitude and direction of the velocity of the particle can be immediately determined
in terms of the distance r. The magnitude v follows at once from the conservation
of energy in the form

E = %mv2 + V(r)

v = ‘/3 (E = V(). (3.21)
m

The radial velocity—the component of r along the radius vector—has been given
in Eq. (3.16). Combined with the magnitude v, this is sufficient information to
furnish the direction of the velocity.* These results, and much more, can also be
obtained from consideration of an equivalent one-dimensional problem.

The equation of motion in r, with # expressed in terms of /, Eq. (3.12), involves
only r and its derivatives. It is the same equation as would be obtained for a

or

*Alternatively, the conservauion of angular momentum furmshes 6, the angular velocity, and this to-
gether with 7 gives both the magnitude and direction of ¥.
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fictitious one-dimensional problem in which a particle of mass m is subject to a
force
! lz
= —. 3.22

fl=f+-— (3:22)
The significance of the additional term is clear if it is written as mr8? = mvZ/r,
which is the familiar centrifugal force. An equivalent statement can be obtained
from the conservation theorem for energy. By Eq. (3.15) the motion of the particle
in 7 is that of a one-dimensional problem with a fictitious potential energy:

/ 1 B /
As a check, note that
v’ 2
f— -—— —
F= or F+ mr3’

which agrees with Eq. (3.22). The energy conservation theorem (3.15) can thus
also be written as

E=V'+im (3.15")

As an illustration of this method of examining the motion, consider a plot of
V' against r for the specific case of an attractive inverse-square law of force:

k
f——r—z-

(For positive k, the minus sign ensures that the force is foward the center of force.)
The potential energy for this force is

V=-:,
.

and the corresponding fictitious potential is

ko2
I————
Vi= r+2mr2'

Such a plot is shown in Fig. 3.3; the two dashed lines represent the separate com-
ponents

k 12
—_ d —_—
r an 2mr2

and the solid line is the sum V'.
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FIGURE 3.3 The equivalent one-dimensional potential for attractive mmverse-square law

of force.

Let us consider now the motion of a particle having the energy E). as shown in
Figs. 3.3 and 3.4. Clearly this particle can never come closer than r (cf. Fig. 3.4).
Otherwise with r < r|, V' exceeds £, and by Eq. (3.15") the kinetic energy would
have to be negative, corresponding to an imaginary velocity! On the other hand,
there is no upper limit to the possible value of r, so the orbit is not bounded. A
particle will come in from infinity, strike the “repulsive centrifugal barrier,” be
repelled, and travel back out to infinity (cf. Fig. 3.5). The distance between E and
V'is %mi‘z, i.e., proportional to the square of the radial velocity, and becomes
zero, naturally, at the turning point ry. At the same time, the distance between E
and V on the plot is the kinetic energy %m v? at the given value of r. Hence, the
distance between the V and V' curves is 4mr242, These curves therefore supply
the magnitude of the particle velocity and its components for any distance r, at the
given energy and angular momentum. This information is sufficient to produce an
approximate picture of the form of the orbit.

For the energy E» = 0 (cf. Fig. 3.3), a roughly similar picture of the orbit
behavior is obtained. But for any lower energy, such as E3 indicated in Fig. 3.6,
we have a different story. In addition to a lower bound ry, there is also a maximum
value r; that cannot be exceeded by r with positive kinetic energy. The motion is
then “bounded,” and there are two turning points, 71 and r2, also known as apsidal
distances. This does not necessarily mean that the orbits are closed. All that can
be said is that they are bounded, contained between two circles of radius ry and
ro with turning points always lying on the circles (cf. Fig. 3.7).
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' <
vV E,

FIGURE 3.4 Unbounded motion at positive energies for inverse-square law of foice.

FIGURE 3.5 The orbit for E| corresponding to unbounded motion.
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] 1
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\

FIGURE 3.6 The equivalent one-dimensional potential for inverse-square law of force,
illustrating bounded motion at negative cnergies.

If the energy is E4 at the minimum of the fictitious potential as shown in
Fig. 3.8, then the two bounds coincide. In such case, motion is possible at only
one radius; 7 = 0, and the orbit is a circle. Remembering that the effective “force”
is the negative of the slope of the V' curve, the requirement for circular orbits is
simply that f' be zero, or

2

= —mrf>.

{
fn=-

mr3

We have here the familiar elementary condition for a circular orbit, that the ap-
plied force be equal and opposite to the “reversed effective force” of centripetal

a0

FIGURE 3.7 The nature of the orbits for hounded motion.
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FIGURE 3.8 The equivalent one-dimensional potential of mverse-square law of force,
illustrating the condition for circular orbits.

acceleration.* The properties of circular orbits and the conditions for them will
be studied in greater detail in Section 3.6.

Note that all of this discussion of the orbits for various energies has been at
one value of the angular momentum. Changing ! changes the quantitative details
of the V’ curve, but it does not affect the general classification of the types of
orbits.

For the attractive inverse-square law of force discussed above, we shall see
that the orbit for Ey is a hyperbola, for E, a parabola, and for E3 an ellipse.
With other forces the orbits may not have such simple forms. However, the same
general qualitative division into open, bounded, and circular orbits will be true
for any attractive potential that (1) falls off slower than 1/ r2asr — oo, and
(2) becomes infinite slower than 1/+% as r — 0. The first condition ensures that
the potential predominates over the centrifugal term for large r, while the second
condition is such that for small r it is the centrifugal term that is important.

The qualitative nature of the motion will be altered if the potential does not sat-
isfy these requirements, but we may still use the method of the equivalent poten-
tial to examine features of the orbits. As an example, let us consider the attractive
potential

a ) 3a
V(r)=—;_—3:, with f=_7£
The energy diagram is then as shown in Fig. 3.9. For an energy E, there are two
possible types of motion, depending upon the initial value of r. If ry is less than
r1 the motion will be bounded, » will always remain less than ry, and the particle
will pass through the center of force. If » is initially greater than r,, then it will

*The case £ < E4 does not correspond to physically possible mouon, for then #2 would have to be
negative, or r imaginary.
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FIGURE 3.9 The equivalent one-dimensional potential for an attractive inverse-fourth
law of force

always remain so; the motion 1s unbounded, and the particle can never get inside
the “potential” hole. The initial condition r; < ryp < r; is again not physically
possible.

Another interesting example of the method occurs for a linear restoring force
(isotropic harmonic oscillator):

f=—kr, V=ik?

For 7ero angular momentum, corresponding to motion along a straight line, V/ =
V and the situation is as shown in Fig. 3.10. For any positive energy the motion is
bounded and, as we know. simple harmonic. If I # 0, we have the state of affairs
shown in Fig. 3.11. The motion then is always bounded for all physically possible

¥ ——

FIGURE 3.10 Effective potential for zero angular momentum.
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FIGURE 3.11 The equivalent one-dimensional potential for a linear restonmg force.

energies and does not pass through the center of force. In this particular case, it is
casily seen that the orbit is elliptic, for if f = —kr, the x- and y-components of
the force are

= —kx,

fx —ky.

fy
The total motion 1s thus the resultant of two simple harmonic oscillations at right
angles, and of the same frequency, which 1n general leads to an elliptic orbit.

A well-known example is the spherical pendulum for small amplitudes. The
familiar Lissajous figures are obtained as the composition of two sinusoidal os-
cillations at right angles where the ratio of the frequencies is a rational number.
For two oscillations at the same frequency, the figure is a straight line when the
oscillations are in phase, a circle when they are 90° out of phase, and an elliptic
shape otherwise. Thus, central force motion under a linear restoring force there-
fore provides the simplest of the Lissajous figures.

THE VIRIAL THEOREM

Another property of central force motion can be derived as a special case of a
general theorem valid for a large variety of systems—the virial theorem. It differs
in character from the theorems previously discussed in being statistical in nature;
i.e., it is concemned with the time averages of various mechanical quantities.

Consider a general system of mass points with position vectors r;, and applied
forces F, (including any forces of constraint). The fundamental equations of mo-
tion are then

(1.3)

We are interested in the quantity
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G= Z p, I
i

where the summation is over all particles in the system. The total time derivative
of this quantity is

dG . R
=2 bep+ ) boem (3.23)
I3 f
The first term can be transformed to
Yobep =) mib k=Y mu?=2T,
1 H H
while the second term by (1.3) is

Zf), o= ZF, - T;.
H T

Equation (3.23) therefore reduces to
d
EZp,-r,=2T+ZF,-r,. (3.24)
{ ]

The time average of Eq. (3.24) over a time interval 1 15 obtained by integrating
both sides with respect to ¢ from 0 to 7, and dividing by t:

or

2T + EF, or = % [G(7) — G(0)]. (3.25)

If the motion is periodic, i.e., all coordinates repeat after a certain time, and if =
is chosen to be the period, then the right-hand side of (3.25) vanishes. A similar
conclusion can be reached even if the motion is not periodic, provided that the
coordinates and velocities for all particles remain finite so that there is an upper
bound to . By choosing t sufficiently long, the right-hand side of Eq. (3.25) can
be made as small as desired. In both cases, it then follows that

_ le=s——
T = —EZF; . r,. (3.26)

Equation (3.26) is known as the virial theorem, and the right-hand side is called
the virial of Clausius. In this form the theorem is imporant in the kinetic theory
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of gases since it can be used to derive ideal gas law for perfect gases by means of
the following brief argument.

We consider a gas consisting of N atoms confined within a container of vol-
ume V. The gas is further assumed to be at a Kelvin temperature T (not to be
confused with the symbol for kinetic energy). Then by the equipartition theorem
of kinetic theory, the average kinetic energy of each atom is given by %k 8T, ky
being the Boltzmann constant, a relation that in effect is the definition of temper-
ature. The left-hand side of Eq. (3.26) is therefore

3NkyT.

On the right-hand side of Eq. (3.26), the forces F; include both the forces of
interaction between atoms and the forces of constraint on the system. A perfect
gas is defined as one for which the forces of interaction contribute negligibly to
the virial. This occurs, e.g., if the gas is so tenuous that collisions between atoms
occur rarely, compared to collisions with the walls of the container. It is these
walls that constitute the constraint on the system, and the forces of constraint, F,,
are localized at the wall and come into existence whenever a gas atom collides
with the wall. The sum on the right-hand side of Eq. (3.26) can therefore be re-
placed in the average by an integral over the surface of the container. The force
of constraint represents the reaction of the wall to the collision forces exerted by
the atoms on the wall, i.e., to the pressure P. With the usual outward convention
for the unit vector n in the direction of the normal to the surface, we can therefore
write

dF, = —PndA,

or
1 P
5 E‘ F,-r,-:—-z—fn-rdA.

But, by Gauss’s theorem,
fn-rdA:[V-rdV =3V.

The virial theorem, Eq. (3.26), for the system representing a perfect gas can there-
fore be written

which, cancelling the common factor of % on both sides, is the familiar ideal
gas law. Where the interparticle forces contribute to the virial, the perfect gas
law of course no longer holds. The virial theorem is then the principal tool, in
classical kinetic theory, for calculating the equation of state corresponding to such
imperfect gases.
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We can further show that if the forces F, are the sum of nonfrictional forces F:
and frictional forces f; proportional to the velocity, then the virial depends only
on the F;; there is no contribution from the ;. Of course, the motion of the system
must not be allowed to die down as a result of the frictional forces. Energy must
constantly be pumped into the system to maintain the motion; otherwise a/{ time
averages would vanish as 7 increases indefinitely (cf, Derivation 1.)

If the forces are derivable from a potential, then the theorem becomes

— =
T = 5IEvv.r,, (3.27)

and for a single particle moving under a central force it reduces to

= 13V
T=—-—r. 3.2
2 or g (328)
If V is a power-law function of r,
V= arn+l’

where the exponent is chosen so that the force law goes as *, then

a—Vr =n+1DV,
or
and Eq. (3.28) becomes
T=" ;' v (3.29)

By an application of Euler’s theorem for homogeneous functions (cf. p. 62), it is
clear that Eq. (3.29) also holds whenever V is a homogeneous function in » of
degree n + 1. For the further special case of inverse-square law forces, n is —2,
and the virial theorem takes on a well-known form:

T=-17 (3.30)

=

THE DIFFERENTIAL EQUATION FOR THE ORBIT,
AND INTEGRABLE POWER-LAW POTENTIALS

In treating specific details of actual central force problems, a change in the orien-
tation of our discussion is desirable. Hitherto solving a problem has meant finding
r and @ as functions of time with E, [, etc., as constants of integration. But most
often what we really seek is the equation of the orbit, i.e., the dependence of r
upon @, eliminating the parameter ¢. For central force problems, the elimination is
particularly simple, since ¢ occurs in the equations of motion only as a variable of
differentiation. Indeed, one equation of motion, (3.8), simply provides a definite
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relation between a differential change dt and the corresponding change dé:
ldt = mr? d6. (3.31)

The corresponding relation between derivatives with respect to ¢ and & is

d 1 d
dt ~ mr2do’
These relations may be used to convert the equation of motion (3.12) or (3.16) to
a differential equation for the orbit. A substitution into Eq. (3.12) gives a second-
order differential equation, while a substitution into Eq. (3.17) gives a simpler
first-order differential equation.
The substitution into Eq. (3.12) yields

l1d(1d 12
( r)———;=f(r), (333)

r2de \mr2de)  mr

(3.32)

which upon substituting # = 1/r and expressing the results in terms of the poten-
tial gives

d2u m d 1
¥ u=-"Zy(2). 3.34
de? T 12 du (u) (3:34)

The preceding equation is such that the resulting orbit is symmetric about two
adjacent turning points. To prove this statement, note that if the orbit is symmet-
rical it should be possible to reflect it about the direction of the turning angle
without producing any change. If the coordinates are chosen so that the turning
point occurs for § = 0, then the reflection can be effected mathematically by
substituting —@ for 6. The differential equation for the orbit, (3.34), is obviously
invariant under such a substitution. Further the initial conditions, here

d
u = u{0), (ﬁ) =0, foré =0,
0

will likewise be unaffected. Hence, the orbit equation must be the same whether
expressed in terms of 8 or —@, which is the desired conclusion. The orbit is there-
Jore invariant under reflection about the apsidal vectors. In effect, this means that
the complete orbit can be traced if the portion of the orbit between any two turning
points is known. Reflection of the given portion about one of the apsidal vectors
produces a neighboring stretch of the orbit, and this process can be repeated in-
definitely until the rest of the orbit is completed, as illustrated in Fig. 3.12.

For any particular force law, the actual equation of the orbit can be obtained by
eliminating ¢ from the solution (3.17) by means of (3.31), resulting in

do = Ldr . (3.35)

mrz\/% (E-v0) - 557)
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FIGURE 3.12 Extension of the orbit by reflection of a portion about the apsidal vectors.

With slight rearrangements, the integral of (3.35) is

+ 6o, (3.36)

r dr
e:/
o r2\/271E 2V _ 1

? 2

or, if the variable of integration is changedtou = 1/r,

u d
0 =0y — f “ . (3.37)
o ‘/2@5 _ 2mV _

As in the case of the equation of motion, Eq. (3.37), while solving the problem
formally, is not always a practicable solution, because the integral often cannot be
expressed in terms of well-known functions. In fact, only certain types of force
laws have been investigated. The most important are the power-law functions of 7,

V = aqr"t! (3.38)

so that the force varies at the nth power of r.* With this potential, (3.37) becomes

. du
8 =06y— — .
[ \/.é_’;;_}-" —_ 2;#“—)!—1 _ u2

(3.39)

This again is integrable in terms of simple functions only in certain cases. The
particular power-law exponents for which the results can be expressed in terms of
trigonometric functions are

n=1,-2,-3.

*The case n = —1 15 to be excluded from the discussion. In the potcnuial (3.38), 1t corresponds (0 a
constant potential, 1.e , no force at all It 15 an cqually anomalous case if the exponent is used in the
force law directly, since a force varying as r—! corresponds to a logarithmmce potential, which is not a
power law at all. A loganthrmuc potential is unusual for motion about a point, it is more characteristic
of a line source. Further details of these cases are given in the second edition of this text.
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The results of the integral for
n= 5, 3, 0, _41 _53 '—7

can be expressed in terms of elliptic functions. These are all the possibilities for an
integer exponent where the formal integrations are expressed in terms of simple
well-known functions. Some fractional exponents can be shown to lead to elliptic
functions, and many other exponents can be expressed in terms of the hyperge-
ometric function. The trigonometric and elliptical functions are special cases of
generalized hypergeometric function integrals. Equation (3.39) can of course be
numerically integrated for any nonpathological potential, but this is beyond the
scope of the text.

CONDITIONS FOR CLOSED ORBITS (BERTRAND'S THEOREM)

We have not yet extracted all the information that can be obtained from the equiv-
alent one-dimensional problem or from the orbit equation without explicitly solv-
ing for the motion. In particular, it is possible to derive a powerful and thought-
provoking theorem on the types of attractive central forces that lead to closed
orbits, i.e., orbits in which the particle eventually retraces its own footsteps.
Conditions have already been described for one kind of closed orbit, namely a
circle about the center of force. For any given I, this will occur if the equivalent
potential V/(r) has a minimurm or maximum at some distance rg and if the energy
E is just equal to V'(rg). The requirement that V' have an extremum is equiva-
lent to the vanishing of f' at rg, leading to the condition derived previously (cf.
Section 3.3).
12
flro) = ——, (3.40)
mr, 0

which says the force must be attractive for circular orbits to be possible. In addi-
tion, the energy of the particle must be given by

l2
E=V(rg) + 3 (3.41)
2m1r0

which, by Eq. (3.15), corresponds to the requirement that for a circular orbit 7 is
zero. Equations (3.40) and (3.41) are both elementary and familiar. Between them
they imply that for any attractive central force it is possible to have a circular
orbit at some arbitrary radius r(, provided the angular momentum / is given by
Eq. (3.40) and the particle energy by Eq. (3.41).

The character of the circular orhit depends on whether the extremum of V' is
a minimum, as in Fig. 3.8, or a maximum, as if Fig. 3.9. If the energy is slightly
above that required for a circular orbit at the given value of /, then for a minimum
in V' the motion, though no longer circular, will still be bounded. However, if
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V' exhibits 4 maximum, then the slightest raising of £ above the circular value,
Eq. (3.34), results in motion that is unbounded, with the particle moving both
through the center of force and out to infinity for the potential shown in Fig. 3.9.
Borrowing the terminology from the case of static equilibrium, the circular orbit
arising in Fig. 3.8 is said to be stable; that in Fig. 3.9 is unstable. The stability
of the circular orbit is thus determined by the sign of the second derivative of V'
at the radius of the circle, being stable for positive second derivative (V’ concave
up) and unstable for V' concave down. A stable orbit therefore occurs if

3V’ 3 312
3 = —.—f +—>0 (3.42)
ore |p=r, o |r=p, mry
Using Eq. (3.40), this condition can be written
3 o
aql L3 (3.43)
o [y=p, ro
or
dlof > =3 (343)
dinr |,_,,

where f(rg)/rg is assumed to be negative and given by dividing Eq. (3.40) by r.
If the force behaves like a power law of r in the vicinity of the circular radius ry,

f = —kr",
then the stability condition, Eq. (3.43), becomes
—knr" 1 < 3kl
or
n> =3, (3.44)

where k is assumed to be positive. A power-law attractive potential varying more
slowly than 1/ is thus capable of stable circular orbits for all values of r.

If the circular orbit is stable, then a small increase in the particle energy above
the value for a circular orbit results in only a slight variation of r about ;. It can
be easily shown that for such small deviations from the circularity conditions, the
particle executes a simple harmonic motion 1n #(= 1/7) about uy:

u = ug + acos po. (3.45)

Here a is an amplitude that depends upon the deviation of the energy from the
value for circular orbits, and 8 is a quantity arising from a Taylor series expansion
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of the force law f (r) about the circular orbit radius ry. Direct substitution into the
force law gives

gr=34+-—-=| . (3.46)

As the radius vector of the particle sweeps completely around the plane, u goes
through 8 cycles of its oscillation (cf. Fig. 3.13). If 8 is a rational number, the
ratio of two integers, p/q, then after g revolutions of the radius vector the orhit
would begin to retrace itself so that the orbit is closed.

At each rg such that the inequality in Eq. (3.43) is satisfied, it is possible to
establish 4 stable circular orbit by giving the particle an initial energy and angular
momentum prescribed by Egs. (3.40) and (3.41). The question naturally arises as
to what form the force law must take in order that the slightly perturbed orbit about
any of these circular orbits should be closed. It is clear that under these conditions
B must not only be a rational number, it must also be the same rational number at
all distances that a circular orbit is possible. Otherwise, since § can take on only
discrete values, the number of oscillatory periods would change discontinuously
with rg, and indeed the orbits could not be closed at the discontinuity. With /32
everywhere constant, the defining equation for 52, Eq. (3.46), becomes in effect
a differential equation for the force law f in terms of the independent vanable rp.

We can indeed consider Eq. (3.46) to be written in terms of r if we keep in
mind that the equation is valid only over the ranges mn r for which stable circular
orbits are possible. A slight rearrangement of Eq. (3.46) leads to the equation

= B2 -3, (3.47)

FIGURE 3.13  Orbit for motion in a central force deviating slightly from a circular orbit
forf=35.
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which can be immediately integrated to give a force law:

k

fO) =-5— (3.48)
;

5
All force laws of this form, with 8 a rational number, lead to closed stable orbits
for initial conditions that differ only slightly from conditions defining a circular
orbit. Included within the possibilities allowed by Eq. (3.48) are some familiar
forces such as the inverse-square law (8 = 1), but of course many other behaviors,
suchas f = —kr™2°(8 = %), are also perritted.

Suppose the initial conditions deviate more than slightly from the requirements
for circular orbits; will these same force laws still give circular orbits? The ques-
tion can be answered directly by keeping an additional term in the Taylor series
expansion of the force law and solving the resultant orbit equation.

I. Bertrand solved this problem in 1873 and found that for more than first-order
deviations from circularity, the orbits are closed only for 82 = 1 and 8% = 4. The
first of these values of 82, by Eq. (3.48), leads to the familiar attractive inverse-
square law; the second is an attractive force proportional to the radial distance—
Hooke’s law! These force laws, and only these, could possibly produce closed
orbits for any arbitrary combination of ! and E(E < 0), and in fact we know
from direct solution of the orbit equation that they do. Hence, we have Bertrand’s
theorem: The only central forces that result in closed orbits for all bound particles
are the inverse-square law and Hooke's law.

This is a remarkable result, well worth the tedious algebra required. It is a com-
monplace astronomical observation that bound celestial ohjects move in orbits
that are in first approximation closed. For the most part, the small deviations from
a closed orbit are traceable to perturbations such as the presence of other bodies.
The prevalence of closed orbits holds true whether we consider only the solar sys-
tem, or look to the many examples of true binary stars that have been observed.
Now, Hooke's law is a most unrealistic force law to hold at all distances, for jt
implies a force increasing indefinitely to infinity. Thus, the existence of closed
orbits for a wide range of initial conditions by itself leads to the conclusion that
the gravitational force varies as the inverse-square of the distance.

We can phrase this conclusion in a slightly different manner, one that is of
somewhat more significance in modemn physics. The orbital motion in a plane
can be looked on as compounded of two oscillatory motions, one in » and one
in @ with the same period. The character of orbits in a gravitational field fixes
the form of the force law. Later on we shall encounter other formulations of the
relation between degeneracy and the nature of the potential.

THE KEPLER PROBLEM: INVERSE-SQUARE LAW OF FORCE

The inverse-square law is the most important of all the central force laws, and it
deserves detailed treatment. For this case, the force and potential can be written
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as

k k
f=—> V=—. (3.49)
r r
There are several ways to integrate the equation for the orbit, the simplest being to
substitute (3.49) in the differential equation for the orbit (3.33). Another approach
is to start with Eq. (3.39) with n set equal to —2 for the gravitational force

d

9=9’—f u , (3.50)
JRE ke o2

where the integral is now taken as indefinite. The quantity 9’ appearing in (3.50)
is a constant of integration determined by the initial conditions and will not nec-
essarily be the same as the initial angle &y at time r = 0. The indefinite integral is
of the standard form,

dx 1 B+2yx
f m = Harccos—T, (3.5D
where
g = B* —4ay.
To apply this to (3.50), we must set
a—z’;;E, = 27;k y =—1, (3.52)

2mk \ 2 2EI?
===} {1+=}. 3.53
- () (1+222) 55

With these substitutes, Eq. (3.50) becomes

Ly _
9 =6’ — arccos —'""—2 (3.54)
1+ 2E!

mk?

Finally, by solving fot u, = 1/r, the equation of the orbit is found to be

1 mk 2EI? ,
-—= — + + —c — . S
. 2 1 1 2 cos(@ —9) (3.55)

The constant of integration 8’ can now be identified from Eq. (3.55) as one of the
turning angles of the orbit. Note that only three of the four constants of integration
appear in the orbit equation; this is always a characteristic property of the orbit. In
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effect, the fourth constant locates the initial position of the particle on the orbit. If
we are interested solely in the orbit equation, this information is clearly irrelevant
and hence does not appear in the answer. Of course, the missing constant has to
be supplied if we wish to complete the solution by finding  and # as functions
of time. Thus, if we choose to integrate the conservation theorem for angular
momentum,

mr2 do = Ldr,

by means of (3.55), we must additionally specify the initial angle 8.
Now, the general equation of a conic with one focus at the origin is

% — C[1 + ecos(@ — 0], (3.56)

where e is the eccentricity of the conic section. By comparison with Eq. (3.55), it
follows that the orbit is always a conic section, with the eccentricity

2E[?
=14+ —. 3.57
e t o (3.57)
The nature of the orbit depends upon the magnitude of e according to the follow-
ing scheme:

e>1. E >0 hyperbola,
e=1, E=0: parabola,
e<l, E<(: ellipse,

_ E= mk? ) -
e=0, =5 circle.

This classification agrees with the qualitative discussion of the orbits on the
energy diagram of the equivalent one-dimensional potential V. The condition for
circular motion appears here in a somewhat different form, but it can easily be
derived as a consequence of the previous conditions for circularity. For a circular
orbit, T and V are constant in time, and from the virial theorem

E=T+V= V+V—V
= =3 =7
Hence
E=--I-C—. (3.58)
2rg

But from Eq. (3.41), the statement of equilibrium between the central force and
the “effective force,” we can write

kP

—3

2 2
f"o mro
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or

12
mk’

ro = (3.59)

With this formula for the orbital radius, Eq. (3.58) becomes

mk?

E=——,
212

the above condition for circular motion.

In the case of elliptic orbits, it can be shown the major axis depends solely
upon the energy, a theorem of considerable importance in the Bohr theory of the
atom. The semimajor axis is one-half the sum of the two apsidal distances r) and
ra (cf. Fig. 3.6). By definition, the radial velocity is zero at these points, and the
conservation of energy implies that the apsidal distances are therefore the roots of
the equation (cf. Eq. (3.15))

2 k
E — - =
2mr2+r 0,
or
k 2
2
p—— =0. 3,
r+Er I 0 (3.60)

Now, the coefficient of the linear term in a quadratic equation is the negative of
the sum of the roots. Hence, the semimajor axis is given by
ryL+nr k
= = —— 3-61
=73 2F (.60
Note that in the circular limit, Eq. (3.61) agrees with Eq. (3.58). In terms of the
semimajor axis, the eccentricity of the ellipse can be written

lZ
e= 1—~—, (3.62)
mka

(a relation we will have use for in a later chapter). Further, from Eq. (3.62) we
have the expression

12
— =a(l — €%, (3.63)
mk

in terms of which the elliptical orbit equation (3.55) can be written

Lo at=é)
T I4ecos(d —9)

(3.64)
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FIGURE 3.14 Ellipses with the same major axes and eccentricities from 0.0 to 0.9.

From Eq. (3.64), 1t follows that the two apsidal distances (which occur when 8 —6’
is 0 and 7, respectively) are equal to a(1 — e) and a(l + €), as is to be expected
from the properties of an ellipse.

Figure 3.14 shows sketches of four elliptical orbits with the same major axis
a, and hence the same energy, but with eccentricities ¢ = 0.0, 0.5, 0.75, and 0.9,
Figure 3.15 shows how r{ and r» depend on the eccentricity ¢.

The velocity vector vy of the particle along the elliptical path can be resolved
into a radial component vy = ¥ = p,/m plus an angular component vg = rf =
Iimr

¥ = Urf‘ -+ vgé.

The radial component with the magnitude vy = evpsing/(1 — ¢2) vanishes
at the two apsidal distances, while vg artains its maximum value at perihelion
and its minimum at aphelion. Table 3.1 lists angular velocity values at the ap-
sidal distances for several eccentricities. Figure 3.16 presents plots of the ra-
dial velocity component vy versus the radius vector r for the half cycle when
vy points outward, i.e., it is positive. During the remaining half cycle vy is nega-

2

aphelion distance

perihelion distance

0

0 c i

FIGURE 3.15 Decpendence of normalized apsidal distances 7; (lower line) and r» (upper
line) on the eccentricity &.
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TABLE 3.1 Normalized angular speeds § and vg = ré at perihelion () and aphelion
(r2), respectively, 1n Keplerian orbits of vanous eccentricities (¢). The normalized radial
distances at perthelion and aphelion are Listed m columns 2 and 3, respectively. The
normalization 18 with respect to motion in a circle with the radius ¢ and the angular
momentum ! = mavy = ma26.

Eccentricity Penhelion  Aphelion Angular speed Linear angular speed
ri/a r/a b1/ 62/80 ver/vo  ver/uo
1 1 1 1
£ 1—¢ l+¢
(I-2? (+e2 1-¢ l+e
0 1 1 L 1 1 1
0.1 0.9 1.1 1.234 0.826 1.111 0.909
0.3 0.7 1.3 2041 0.592 1.429 0.769
0.5 0.5 L5 4 000 0.444 2.000 0.667
07 0.3 1.7 11.111 0.346 3.333 0.588
0.9 0.1 1.9 [00.000 0.277 10.000 0.526

tive, and the plot of Fig. 3.16 repeats itself for the negative range below v, = 0
(not shown). Figure 3.17 shows analogous plots of the angular velocity com-
ponent vy versus the angle 8. In these plots and 1 the table the velocities are
normalized relative to the quantities vy and ) obtained from the expressions
! = mr?é = mrvg = ma6y = mav for the conservation of angular momentum
in the elliptic orbits of semimajor axis @, and in the circle of radius a.

0.5 ' 1 ' 15

FIGURE 3.16 Normalized radial velocity, vy, versus r for three values of the ecceniric-
ity &.
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FIGURE 3.17 Normahzed orbital velocity, vg, versus 6 for three values of the eccen-
tricity &.

3.6 B THE MOTION IN TIME IN THE KEPLER PROBLEM

The orbital equation for motion in a central inverse-square force law can thus be
solved in a fairly straightforward manner with results that can be stated in simple
closed expressions. Describing the motion of the particle in time as it traverses the
orbit is however a much more involved matter. In principle, the relation between
the radial distance of the particle r and the time (relative to some starting point)
is given by Eq. (3.18), which here takes on the form

r d
f= /%f ’; . (3.65)
ro l;___l_._}_E

2mr?

Similarly, the polar angle & and the time are connected through the conserva-
tion of angular momentum,

mr2

dt = Td@,

which combined with the orbit equation (3.51) leads to

t = L /B ab (3.66)
~ mk2 Jy [1+ecos(@ — 0N '

Either of these integrals can be carried out in terms of elementary functions. How-
ever, the relations are very complex, and their inversions to give r or 8 as func-
tions of ¢ pose formidable problems, especially when one wants the high precision
needed for astronomical observations.

To illustrate some of these involvements, let us consider the situation for
parabolic motion (¢ = 1), where the integrations can be most simply carried
out. It is customary to measure the plane polar angle from the radius vector at
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the point of closest approach—a point most usually designated as the perihe-
fion.* This convention corresponds to setting 8’ in the orbit equation (3.51) equal
to zero. Correspondingly, time is measured from the moment, 7', of perihelion
passage. Using the trigonometric identity

I +cosf = Zcoszg,

Eq. (3.66) then reduces for parabolic motion to the form
13 ¢ 4 9

t= ——= et — db.

ami2 Jo ¢ 2

The integration is easily performed by a change of variable to x = tan(8/2),
leading to the integral

l3 1an(8/2)
f (1 + x?) dx,
0

= ——
2mk?
or
t= i tan'9+1tan3l9 (3.67)
T 2mk? 23 2] -

In this equation, —7 < 8 < m, where for r — —oo the particle starts ap-
proaching from infinitely far away located at & = —x. The time ¢ = 0 corre-
sponds to 8 = 0, where the particle is at perihelion. Finally ¢ & 400 corresponds
to 6 — 7 as the particle moves infinitely far away. This is a straightforward rela-
tion for ¢ as a function of #; inversion to obtain # at a given time requires solving
a cubic equation for tan(6/2), then finding the corresponding arctan. The radial
distance at a given time is given through the orbital equation.

For elliptical motion, Eq. (3.65) is most conveniently integrated through an
auxiliary variable v, denoted as the eccentric anomaly,* and defined by the rela-
tion

r=a(l —ecosy). (3.68)

By comparison with the orbit equation, (3.64), it is clear that ¥ also covers the
interval 0 to 27 as 6 goes through a complete revolution, and that the perihelion
occurs at ¥ = O (where 8 = 0 by convention) and the aphelionat ¥ =7 = 6.

*Literally, the term shouid be restricted to orbits around the Sun, while the more general term should
be periapsis. However, 1t has become customary to use perthelion no matter where the center of force
15 Even for spacc craft orbiting the Moon, official descnptions of the orbital parameters refer to
perihelion where pericynthion would be the pedantic term

*Medieval astronomers expected the angular motion to be constant. The angle calculated by multi-
plying this average angular velocity (2/period) by the time since the last perihelion passage was
called the mean anomaly From the mean anoraly the eccentric anomaly could be calculated and then
used to calculate the irue anomaly. The angle @ 1s called the true anomaly just as it was in medieval
astronomy.
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Expressing E and £ in terms of a, e, and k, Eq. (3.65) can be rewritten for

elliptic motion as
r d
,=_/;"_kf o S— (3.69)
ro \/r — g alee)

2a

where, by the convention on the starting time, rg is the perihelion distance. Substi-
tution of r in terms of ¥ from Eq. (3.68) reduces this integral, after some algebra,

to the simple form
3
‘= ‘/%f (1 — ecos ¥) dp. (3.70)
0

First, we may note that Eq. (3.70) provides an expression for the period, 7, of
elliptical motion, if the integral is carried over the full range in ¥ of 27:

r= 27ra3/2\/%. (3.71)

This important result can also be obtained directly from the properties of an el-
lipse. From the conservation of angular momentum, the areal velocity is constant

and is given by
dA 1, {
— = —\ .7
i =20 o 6-72)

The area of the orbit, A, is to be found by integrating (3.72) over a complete
period t:

tdA l
Ldt=A=—,
0 dt 2m
Now, the area of an ellipse is
A =mab,

where, by the definition of eccentricity, the semiminor axis b is related to @ ac-
cording to the formula

b=ay1—e2

By (3.62), the semiminor axis can also be written as
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and the period is therefore

2m 4 2 m
- = 21 —2ma3? =
T ] wa ‘/ . Ta ‘/k’

as was found previously. Equation (3.71) states that, other things being equal,
the square of the period is proportional to the cube of the major axis, and this
conclusion is often referred to as the third of Kepler's laws.* Actually, Kepler
was concerned with the specific problem of planetary motion in the gravitational
field of the Sun. A more precise statement of this third law would therefore be:
The square of the periods of the various planets are proportional to the cube of
their major axes. In this form, the law is only approximately true. Recall that the
motion of a planet about the Sun is a two-body problem and m in (3.71) must be
replaced by the reduced mass: (cf. Eq. (3.4))

mymy
- my +m2’

where m; may be taken as referring to the planet and m» to the Sun. Further, the
gravitational law of attraction is

mymz
f =-C 52
r
so that the constant & is
k= GCGmymy. (3.73)

Under these conditions, (3.71) becomes

2ra3? 2na’l?
T = o] s
VG(my+mz)  /Gma

(3.74)

if we neglect the mass of the planet compared to the Sun. It is the approximate
version of Eq. (3.74) that is Kepler’s third law, for it states that 7 is proportional
to a*/2, with the same constant of proportionality for all planets. However, the
planetary mass m; is not always completely negligible compared to the Sun’s; for
example, Jupiter has a mass of about 0.1% of the mass of the Sun. On the other
hand, Kepler’s third law is rigorously true for the electron orbits in the Bohr atom,
since y and k are then the same for all orbits in a given atom.

To return to the general problem of the position in time for an elliptic orbit, we
may rewrite Eq. (3.70) slightly by introducing the frequency of revolution w as

*Kepler's three laws of planetary motion, published around 1610, were the result of his pioneering
analysis of planetary observations and laid the groundwork for Newton’s great advances The second
law, the conservation of areal velocity. 1s a general theorem for central force motion, as has been
noted previously, However, the first—that the planets move 1n elliptical orbits about the Sun at one
focus—and the third are restricted specifically to the inverse-square law of force.
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w="=[—. (3.75)

The integration in Eq. (3.70) is of course easily performed, resulting in the relation
wt = —esiny, (3.76)

known as Kepler’s equation. The quantity wt goes through the range 0 to 2,
along with ¥ and 6, in the course of a complete orbital revolution and is therefore
also denoted as an anomaly, specifically the mean anomaly.

To find the position in orbit at a given time ¢, Kepler’s equation, (3.76), would
first be inverted to obtain the corresponding eccentric anomaly ¥. Equation (3.68)
then yields the radial distance, while the polar angle 9 can be expressed in terms
of ¥ by comparing the defining equation (3.68) with the orbit equation (3.64):

1-¢?
1+ ecosf = T —ecos v

With a little algebraic manipulation, this can be simplified, to

cosy —e

1—ecosy 3-77)

cos@ =

By successively adding and subtracting both sides of Eq. (3.77) from unity and
taking the ratio of the resulting two equations, we are led to the alternative form

7 1+e ¥
A = 3.7
tan2 l_gtan2 (3.78)

Either Eq. (3.77) or (3.78) thus provides 8, once ¥ is known. The solution of
the transcendental Kepler’s equation (3.76) to give the value of ¥ corresponding
to a given time is a problem that has attracted the attention of many famous math-
ematicians ever since Kepler posed the question early in the seventeenth century.
Newton, for example, contributed what today would be called an analog solution.
Indeed, it can be claimed that the practical need to solve Kepler’'s equation to ac-
curacies of a second of arc over the whole range of eccentricity fathered many
of the developments in numerical mathematics in the eighteenth and nineteenth
centuries. A few of the more than 100 methods of solution developed in the pre-
computer era are considered in the exercises to this chapter.

THE LAPLACE-RUNGE-LENZ VECTOR

The Kepler problem is also distinguished by the existence of an additional con-
served vector besides the angular momentum. For a general central force, New-



3.9 The Laplace-Runge-Lenz Vector 103
ton’s second law of motion can be writien vectorially as

. r

p=rf0 (3.79)

The cross product of p with the constant angular momentum vector L therefore
can be expanded as

x L= [rx(xp)]

mf(r)
r

my ) [ra-0 - %], (3.80)
r
Equation (3.80) can be further simplified by noting that
r-r= 1d (rer)y=rr
" 2ar =

(o, in less formal terms, the component of the velocity in the radial direction is 7).
As L is constant, Eq. (3.80) can then be rewritten, after a little manipulation, as

r rr

d
@ x L) = —mf (r)r? (; - TZ) .

or

d - 24 (T
E(p x L)y = —mf(r)r 7 (r) . (3.8

Without specifying the form of f(r), we can go no further. But Eq. (3.81) can be
immediately integrated if f(r) is inversely proportional to r2—the Kepler prob-
lem. Writing f(r) in the form prescribed by Eq. (3.49), Eq. (3.81) then becomes

d d (mkr
E(DXL)—;E('—F"),

which says that for the Kepler problem there exists a conserved vector A defined
by

A=pxL—mk-. (3.82)
r

The relationships between the three vectors in Eq. (3.82) and the conservation of
A are illustrated in Fig. 3.18, which shows the three vectors at different positions
in the orbit. In recent times, the vector A has become known amongst physicists
as the Runge-Lenz vector, but priority belongs to Laplace.

From the definition of A, we can easily see that

A.L=0, (3.83)

since L is perpendicular to p x L and r is perpendicular to L = r x p. It follows
from this orthogonality of A to L that A must be some fixed vector in the plane of
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FIGURE 3.18 The vectors p, L, and A at three positions 1n a Keplenan orbit, At perthe-
lion (extreme left) |p x L| = mk(1+¢) and at aphelion (extreme right) [px L| = mk(1 —e).
The vector A always points 1n the same direction with a magnitude mke.

the ofbit, 1T b 1s used to denote the angle vetween r and the fixed dreciion ol A,
then the dot product of r and A is given by

A.r=Arcosf =r-(px L) — mkr. (3.84)
Now, by permutation of the terms in the triple dot product, we have
l'-(pXL)=L-(l'xp)=lz,
so that Eq. (3.84) becomes

Ar cosf = I — mkr,

or

L mk A
-= 1% — . %R
r 12 i mk COS% B85
The Laplace-Runge-Lenz vector thus provides still another way of deriving the
orbit equation for the Kepler problem! Comparing Eq. (3.85) with the orbit equa-
tion in the form of Eq. (3.55) shows that A is in the direction of the radius vector
to the perihelion point on the orbit, and has a magnitude

A = mke. (3.86)

For the Kepler problem we have thus identified two vector constants of the
motion L and A, and a scalar E. Since a vector must have all three independent
components, this corresponds to seven conserved quantities in all. Now, a system
such as this with three degrees of freedom has six independent constants of the
motion, corresponding, say to the three components of both the initial position
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and the initial velocity of the particle. Further, the constants of the motion we
have found are all algebraic functions of r and p that describe the orbit as a whole
(orientation in space, eccentricity, etc.); none of these seven conserved quantities
relate to where the particle is located in the orbit at the initial time. Since one
constant of the motion must relate to this information, say in the form of 7. the
time of the perihelion passage, there can be only five independent constants of the
motion describing the size, shape, and orientation of the orbit. We can therefore
conclude that not all of the quantities making up L, A, and E can be independent;
there must in fact be two relations connecting these quantities. One such relation
has already been obtained as the orthogonality of A and L, Eq. (3.83). The other
follows from Eq. (3.86) when the eccentricity is expressed in terms of E and /
from Eq. (3.57), leading to

A% = m?k? 4+ 2mEI?, (3.87)

thus confirming that there are only five independent constants out of the seven.

The angular momentum vector and the energy alone contain only four inde-
pendent constants of the motion: The Laplace-Runge—Lenz vector thus adds one
more. It is natural to ask why there should not exist for any general central force
law some conserved quantity that together with L and E serves to define the orbit
in a manner similar to the Laplace-Runge~Lenz vector for the special case of the
Kepler problem. The answer seems to be that such conserved quantities can in
fact be constructed, but that they are in general rather peculiar functions of the
motion. The constants of the motion relating to the orbit between them define the
orbit, i.e., lead to the orbit equation giving r as a function of 8. We have seen
that in general orbits for central force motion are not closed; the arguments of
Section 3.6 show that closed orbits imply rather stringent conditions on the form
of the force law. It is a property of nonclosed orbits that the curve will eventually
pass through any arbitrary (r, 8) point that lies between the bounds of the turning
points of r. Intuitively this can be seen from the nonclosed nature of the orbit; as
6 goes around a full cycle, the particle must never retrace its footsteps on any pre-
vious orbit. Thus, the orbit equation is such that r is a multivalued function of
(modulo 27); in fact, it is an infinite-valued function of 8. The corresponding con-
served quantity additional to L and E defining the orbit must similarly involve an
infinite-valued function of the particle motion. Suppose the r variable is periodic
with angular frequency «, and the angular coordinate & is periodic with angular
frequency wy. If these two frequencies have a ratio (w,/wg) that is an integer or
integer fraction, periods are said to be commensurate. Commensurate orbits are
closed with the orbiting mass continually retracing its path. When wg > o, the
orbit will spiral about the origin as the distance varies between the apsidal (max-
imum and minimum) values, ¢losing only if the frequencies are commensurate.
If, as in the Kepler problem, w, = w,, the periods are said to be degenerate. If
the orbits are degenerate there exists an additional conserved quantity that is an
algebraic function of r and p, such as the Runge-Lenz vector.

From these arguments we would expect a simple analog of such a vector to
exist for the case of a Hooke’s law force, where, as we have seen. the orbits are
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also degenerate. This is indeed the case, except that the natural way to formulate
the constant of the motion leads not to a vector but to a tensor of the second
rank (cf. Section 7.5). Thus, the existence of an additional constant or integral of
the motion, beyond E and L, that is a simple algebraic function of the motion
is sufficient to indicate that the motion is degenerate and the bounded orbits are
closed.

SCATTERING IN A CENTRAL FORCE HELD

Historically, the interest in central forces arose out of the astronomical problems
of planetary motion. There is no reason, however, why central force motion must
be thought of only in terms of such problems; mention has already been made
of the orbits in the Boh: atom. Another field that can be investigated in terms of
classical mechanics is the scattering of particles by central force fields. Of course,
if the particles are on the atomic scale, it must be cxpected that the specific results
of a classical treatment will often be incorrect physically, for quantum effects
are usually large in such regions. Nevertheless, many classical predictions remain
valid 1o a good approximation. More important, the procedures for describing
scattering phenomena are the same whether the mechanics is classical or quan-
tum, we can learn to speak the language equally as well on the basis of classical
physics.

In its one-body formulation, the scattering problem is concerned with the scat-
tering of particles by a center of force. We consider a uniform beam of particles—
whether electrons, or «-particles. or planets is irrelevant—all of the same mass
and energy incident upon 2 center of force. It will be assumed that the force falls
off to zero for very large distances. The incident beam is characterized by speci-
fying ils intensity I (also called lux density), which gives the number of particles
crossing unit area normal to the beam in unit time. As a particle approaches the
center of force, it will be either attracted or repelled, and its orbit will deviate
from the incident straight-line trajectory. After passing the center of force, the
force acting on the particle will eventually diminish so that the orbit once again
approaches a straight line. In general, the final direction of motion is not the sane
as the incident direction, and the particle is said to be scattered. The cross section
for scattering in a given direction, o (£2), is defined by

number of particles scattered into solid angle d£2 per unit time
incident intensity

o(Q)dQ =

(3.88)
where d 2 is an element of solid angle in the discction €. Often o (1) is also des-
ignated as the differential scattering cross section. With central forces there must
be complete symmetry around the axis of the incident beam; hence the element
of solid angle can be written

dQ =275in0d0O, (3.89)
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FIGURE 3.19 Scattering of an incidem beam of particles by a center of force.

where © is the angle between the scattered and incident directions, known as the
scattering angle (cf. Fig. 3,19, where repulsive scattering is illustrated). Note that
the name “cross section” is deserved in that ¢ (€2) has the dimensions of an area.
For any given particle the constants of the orbit, and hence the amount of scat-
tering, are determined by its energy and angular momentum. It is convenient to
express the angular momentum in terms of the energy and a guantity known as
the impact parameter, s, defined as the perpendicular distance between the center
of force and the incident velocity. If vg is the incident speed of the particle, then

I = mvps = sv2mE. (3.90

Once E and s are fixed, the angle of scattering @ is then determined uniquely.*
For the moment, it will be assumed that different values of s cannot lead to the
same scattering angle, Therefore, the number of particles scattered into a solid
angle d2 lying between © and ©® 4+ d®© must be equal to the number of the
incident particles with impact parameter lying between the corresponding s and
s +ds:

2rls|ds| = 2no (@) sin® | dO)|. 3.9

Absolute value signs are introduced in Eq. (3.91) because numbers of particles
must of course always be positive, while s and © often vary in opposite directions.
If s is considered as a function of the energy and the corresponding scattering
angle,

s =5(0, E), (3.92)

It 15 at (hi, point 1n the formulation that classical and quantum mechanics part company. Indeed,
it is fundamentally characteristic of quantum mechanics that we cannol unequivocally predict the
trajectory of any particutar particle. We can only give prebabilities tor scatering in various directions.
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FIGURE 3.20 Relation of orbit parameters and scattering angle 1n an example of repul-
sive scattering.

then the dependence of the differential cross section on ® is given by

ds
do

$

=56 . (3.93)

o(®)

A formal expression for the scattering angle ® as a function of s can be di-
rectly obtained from the orbit equation, Eq. (3.36). Again, for simplicity, we will
consider the case of purely repulsive scattering (cf. Fig. 3 20). As the orbit must
be symmetric about the direction of the periapsis, the scattering angle is given by

O =m - 20, (3.94)

where W is the angle between the direction of the incoming asymptote and the
periapsis (closest approach) direction. In turn, W can be obtained from Eq. (3.36)
by setting r9 = oo when 8y = =& (the incoming direction), whence @ = 7 — WV
when r = ry,, the distance of closest approach, A (rivial rearrangement then leads

to
o d "
w=/ ! . (3.95)

Expressing [ in terms of the impact parameter s (Eq. (3.90)). the resultant expres-
sion for @(s) is

(3.96)

& d
OF)=m — 2/ ser .
Tm r‘/r2 (1 — E}EQ) — 52
or, changing r to | /u

sdu

Os)=n - 2/ . (3.97)
0 \/l - @ — 32y
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Equations (3.96) and (3.97) are rarely used except for direct numerical compu-
tation of the scattering angle. However, when an analytic expression is available
for the orbits, the relation between © and s can often be obtained almost by in-
spection. An historically important illustration of such a procedure is the repulsive
scattering of charged particles by a Coulomb field. The scattering force field is that
produced by a fixed charge —Ze acting on the incident particles having a charge
~Z'e so that the force can be written as

P zz'e
==

i.e., a repulsive inverse-square law. The results of Section 3.7 can be taken over
here with no more change that writing the force constant as

k=—ZZ'é%. (3.98)

The energy E is greater than zero, and the orbit is a hypeibola with the eccentiicity

given by
2E12 2Es \?
=1+ ————= /1 \ 3.99)
¢ \/+m(zz'e2)2 \/+(zz'e) (3.9)

where use has been made of Eq. (3.90). If 6’ in Eq. (3.55) is chosen to be =.
periapsis corresponds to 6 = 0 and the orbit equation becomes

1 mzZ
- =T (ecosf — 1). (3.100}

This hyperbolic orbit equation has the sume form as the elliptic orbit equa-
tion (3.56) except for a change in sign. The direction of the incoming asymptote.
W, is then determined by the condition r — oo:

or, by Eq. (3.94),

Hence,

and using Eq. (3.99)

*To avotd confuston with the electron charge e, the eccentricity will temporarily be denoted by e.
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The desired functional relationship between the impact parameter and the scatter-
ing angle is thetefore

_ZZ¢ @
T U7

(3.101)

so that on carrying through the manipulation required by Eg. (3.93), we find that
o(©) is given by

1 {zz2e2\® 4 ®
c(B®) = 4( 7E ) csC - (3.102)

Equation (3.102) gives the famous Rutherford scattering cross section, orig-
inally dertved by Rutherford for the scattering of o particles by atomic nuclei.
Quantum mechanics in the nonrelativistic limit yields a cross section identical
with this classical result.

In atomic physics, the concept of a total scattering cross section or, defined
as

24
or = / o(2)d =2.~1'f o(®)sin® de.
4z 0

-

is of considerable importance. However, if we attempt to czlculate the total cross
section for Coulomb scattering by substiwting Eq. (3.102) in this definition, we
obtain an infinite result! The physical reason behind this behavior is not diffi-
cult to discern. From its definition the total cross section is the number of parti-
cles scattered in all directions per unit time for unit incident intensity. Now, the
Coulomb field is an example of a “long-range” force; its effects extend to infinity.
The very small deflections occur only for particles with very large impact param-
eters. Hence, all particles in an incident beam of infinite lateral extent will be
scattered to some extent and must be included in the total scattering cross section.
It is therefore clear that the infinite value for o7 is not peculiar to the Coulomb
field; it occurs in classical mechanics whenever the scattering field is different
from zero at all distances, no matter how large.* Only if the force field “cuts off,”
i.e., is zero beyond a certain distance, will the scattering cross section be finite.
Physically, such a cut-off occurs for the Coulomb field of a nucleus as a result of
the presence of the atomic electrons. which “screen” the nucleus and effectively
cancel its charge outside the atom.

*gr 15 also infimie for the Conlomb field 1n quantam mechamcs, since 1t has been stated that
Eq (3 102) reinains vahd there. However, not all “long-range™ forces give mse Lo mfinite lotal cross
sections in quantum mechanics. It tums out that all potentialy that fall off faster at larger distances
than 1/r2 produce a finite quantum-mechanical total scattering cross section
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In Rutherford scattering, the scattering angle ® is a smooth monotonic func-
tion of the impact parameter s. From Eq. (3.101) we see that as s decreases from
infinity, ® increases monotonically from zero, reaching the value  as s goes to
zero. However, other types of behavior are possible in classical systems, requiring
some modification in the prescription, Eq. (3.93), for the classical cross section.
For example, with a repulsive potential and particle energy qualitatively of the
nature shown in Fig. 3.21(a), it is easy to see physically that the curve of © ver-
sus s may behave as indicated in Fig. 3.21ib). Thus, with very large values of
the impact parameter, as noted above, the particle always remains at large radial
distances from the center of force and suffers only minor deflection. At the other
extreme, for s = 0, the particle travels in a straight line into the center of force,
and if the energy is greater than the maximum of the potential, it will continue
on through the center without being scattered at all. Hence, for both limits in s,
the scattering angle goes to zero. For some intermediate value of s, the scatter-
ing angle must pass through a maximum ®,,. When ® < ©,,, there will be wo
values of ¢ that can give rise to the same scattering angle Each will contribute
to the scattering cross section at that angle, and Eq. (3.93) should accordingly be
modified to the form

ds
de

o© =) (3.103)

?

i
where for © # ©,, the index i takes on the values 1 and 2. Here the subscript s
distinguishes the various values of s giving nse to the same value of ©.

Of particular interest is the cross section at the maximum angle of scattering
O, . As the derivative of © with respect to s vanishes at this angle, it follows from
Eq. (3.93) or (3.103) that the cross section must become infinite at @ — ©,,, But
for all larger angles the cross section is zero, since the scattering angle cannot
exceed ©,,. The phenomenon of the infinite rise of the cross section followed by
abrupt disappearance is very similar to what occurs in the geometrical optics of the
scattering of sunlight by raindrops. On the basis of this similarity, the phenomenon
is called rainbow scattering.

= —=In
———
s®

(a) (b)

FIGURE 3,21 Repulsive nonsingular scattering potential and double-valued curve of
scattering angle © versus impact parameter sq for sufficiently high energy.
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So far, the examples have been for purely repulsive scattering. If the scattering
involves attractive forces, further complications may arise. The effect of attraction
will be to pull the particle in toward the center instead of the repulsive deflection
outward shown in Fig. 3.20. In consequence, the angle ¥ between the incoming
direction and the periapsis direction may be greater than 77/2, and the scattering
angle as given by Eq. (3.94) is then negative. This in itself is no great difficulty
as clearly it is the magnitude of © that is involved in finding the cross section.
But, under circumstances © as calculated by Eq. (3.96) may be greater than 27.
That is, the particle undergoing scattering may circle the center of force for one
or more revolutions before going off finally in the scattered direction.

To see how this may occur physically, consider a scattering potential shown as
the s = 0 curve in Fig. 3.22. It is typical of the intermolecular potentials assumed
in many kinetic theory problems—an attractive potential at large distances falling
off more rapidly than 1/r2, with a rapidly rising repulsive potential at small dis-
tances. The other curvesin Fig, 3.22 show the effective one-dimensional potential
V’(r), Eq. (3.22"), for various values of the impact parameter s (equivalently- var-
ious values of 7). Since the repulsive centrifugal barrier dominates at large r for
all values of s > 0, the equivalent potential for small s will exhibit a hump.

Now let us consider an incoming particle with impact perameter 57 and at the
energy E corresponding to the maximum of the hump. As noted in Section 3.3,
the difference between E and V’(r) is proportional to the square of the radial
velocity at that distance When the incoming particle reaches r;, the location of
the maximum in V', the radial velocity is zero. Indeed, recall from the discussion

V'(r)

FIGURE 3.22 A combined attracuve and repulsive scattering potential, and the corre-
sponding equivalent one-dimensional potential at several values of the impact parameter 5.
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in Section 3.6 that we have here the conditions for an unstable circular orbit at the
distance ry. Tn the absence of any perturbation, the incoming particle with param-
eters £ and s1, once having reached r, would circle around the center of force
indefinitely at that distance without ever emerging! For the same impact param-
eter but at an energy E slightly higher than E,;, no true circular orbit would be
established. However, when the particle is in the immediate vicinity of r; the ra-
dial speed would be very small, and the particle would spend a disproportionately
Jarge time in the neighbourhood of the hump The angular velocity, 6, meanwhile
would not be affected by the existence of a maximum, being given at r, by (3.90)

1 31 2

b=—=22/2—"

2 2
mrl r] m

Thus, in the time it takes the particle to get through the region of the hump, the
angular velocity may have carried the particle through angles larger than 2z or
even multiples thereof. In such instances, the classical scattenng 1s said to exhibit
orbiting or spiraling.

As the 1mpact parameter is increased, the well and hump in the equivalent
potential V/ tend to flatten out, until at some parameter s, there is only a point
of inflection in V' at an energy Ej (cf. Fig. 3.22). For particle energies above
E>, there will no longer be orbiting. But the combined effects of the attractive
and repulsive components of the effective potential can lead even in such cases to
zero deflection for some fimte value of the impact parameter. Atlarge energies and
small impact parameters, the major scattering effects are caused by the strongly
repulsive potentials at small distances, and the scattering qualitatively resembles
the behavior of Rutherford scattering.

We have seen that the scattered particle may be deflected by more than 7 when
orbiting takes place. On the other hand, the observed scattering angle in the lab-
oratory lies between O and =, Tt is therefore helpful in such ambiguous cases to
distinguish between a deflection angle ®, as calculated by the right-hand sides of
Eqgs. (3.96) or (3.97). and the observed scattering angle ®. For given @, the angle
© is to be determined from the relation

=10 -2mmn, m a positive integer.

The sign and the value of m are to be chosen so that © lies between O and 7. The
sum in Eqg. (3.103) then covers all values of ¢ leading to the same ®. Figure 3.23
shows curves of @ versus s for the potential of Fig. 3.22 at two different energies
The orbiting that takes place for E = E'; shows up as a singularity in the curve at
s = 31. When E > E,, orbiting no longer takes place, but there is a rainbow effect
at @ = —@’ (although there is a nonvanishing cross section at higher scattering
angles). Note that ® vanishes at s = s3, which means from Eq. (3.93) that the
cross section becomes infinite in the forward direction through the vanishing of
sin ©. The cross section can similarly become infinite in the backward direction
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FIGURE 3.23 Curves of deflection angle ® versus s, for the potential of Fig. 3.22 at two
different energies.

providing

ds

s E

remamns finite at © = 7. These infimties in the [orward or backward scattering
angles are referred to as glory scattering. again in analogy to the corresponcing
phencmenon in meteorological optics.*

A more general treatment would involve quantum corrections, but in some in-
stances quantum effects are small, as in the scattering of low-energy ions in crystal
lattices, and the classical calculations are directly useful. Even when quantum-
mechanical corrections ate important, it often suffices to use an approximation
methed (the “semiclassical” approximation) for which a knowledge of the clas-
sical trajectory is required. For almost all potentials of practical interest, it is im-
possible to find an analytic form for the orbit, and Eq. (3.96) (or variant forms) is
either approximated for particular regions of s or integrated numerically.

TRANSFORMATION OF THE SCATTERING PROBLEM
TO LABORATORY COORDINATES

In the previous section we were concerned with the one-body problem of the
scattering of a particle by a fixed center of force. In practice, the scattering always
involved two bodies; e.g., in Rutherford scattering we have the o particle and the
atomic nucleus. The second particle, mo, is not fixed but recoils from its initial
position as a result of the scattering. Since it has been shown that any two-body

*The backward glory 1s famuiar to awplane travelers as the ning of Light observed to encircle the
shadow of the plane projected on clouds underncath
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FIGURE 3.24 Scattering of two particles as viewed in the laboratory system.

central force problem can be reduced to a one-body problem, it might be thought
that the only change is to replace m by the reduced mass u. However, the matter
is not quite that sitnple. The scattering angle actually measured in the laboratory,
which we shall denote by #, is the angle between the final and incident directions
of the scattered particle in laboratory coordinates.” On the other hand, the angle
@ calculated [t the eyuivalent vne-body problein is the angle between the final
and initial directions of the relative vector between the two particles in the cen-
ter of mass coordinates. These two angles, 6 and @, would be the same only if
the second particle remains stationary through the scattering process. In general,
however, the second particle, though initially at rest, is itself set in motion by the
mutual force between the two particles, and, as is indicated in Fig. 3.24, the two
angles then have different values. The equivalent one-body problem thus does
not directly furnish the scattering angle as measured in the laboratory coordinate
system.

The relationship between the scattering angles ® and # can be determined
by examining how the scattering takes place in a coordinate system moving with
the center of mass of both particles. In such a system the total linear momentum
1s zero, of course, and the two particles always move with equal and opposite
momenta. Figure 3.25 illustrates the appearance of the scattering process to an
observer in the center of mass system. Before the scattering, the particles are
moving directly toward each other: after, they are moving directly away from each
other. The angle between the initial and final directions of the relative vector, O,
must therefore be the same as the scattering angle of either particle in the center-
of-mass svstem. The connection between the two scattering angles ® and # can
thus be obtained by considering the transformation between the center-of-mass
systermn and the laboratory system.

“The scatterng angle ¢ must not be confused with the angle coordinate & of the relative vector, r,
between the two particles
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FIGURE 3.25 Scattering of two particles as viewed in the center of mass system.

It is convenient here to use the terminology of Section 3.1, with slight modifi-
cations:

r; and vi  are the position and velocity, after scattering, of the incident particle,
my, in the laboratory system,

r; and v{ are the position and velocity, after scattering, of particle m; n the
center of mass system, and

Rand V  are the position and (constant) velocity in the center of mass in the
laboratory system.

At any instant, by definition
r =R+rf,
and consequently
vi=V+v. (3.104)

Figure 3.26 graphically portrays this vector relation evaluated after the scattering
has taken place; at which time v, and v’l make the angles ¢ and ©, respectively,

FIGURE 3.26 The relations between the velocities n the center of mass and laboratory
coordinates.
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with the vector V lying along the initial direction. Since the target is initially sta-
tionary in the laboratory system, the incident velocity of particle 1 in that system,
vp, is the same as the initial relative velocity of the particles. By conservation of
total linear momentum, the constant velocity of the center of mass is therefore
given by

(my + m2)V = myvy,
or

V= —I—L—VO, (3.105)
my

where 1. = myma/(m + m3). From Fig. 3.26, it is readily seen that
vy sind = v)sin®
and
vicos? =vycos® + V. (3.106)

The ratio of these two equations gives a relation between ¢ and ©:

smn e
tanfd = ——, 3.107
. cos® 4+ p ¢ )
where ¢ is defined as
=22 (3.108)

An alternative relation can be obtained by expressing v) in terms of the other
speeds through the cosine law as applied to the triangle of Fig. 3.26:

v =0+ V420V eos®. (3.109)

When this is used to eliminate v, from Eq. (3.106) and V is expressed in terms of
vy by Eq. (3.105), we find
cos®+ p

) (3.110)
V1+2pc0s 0 + p?

cos =

Both these relations still involve a ratio of speeds through o. By the definition
of center of mass, the speed of particle 1 in the center-of-mass system, v; , 18 con-
nected with the relative speed v after the collision, by the equation (cf. Eq. (3.2)),
where v = |F|:

L3
m

v = —vw.
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Hence, p can also be written as

mp v

(3.108)

my v’

where v, it should be emphasized. is the relative speed after the collision. When
the collision is elastic, the total kinetic energy of the two particles remains unal-
tered and v must equal vg so that p is simply

p="1 (elastic collision) G111
3

independent of energies or speeds. If the collision is inelastic, the total kinetic
energy of the two particles is altered (e.g., some of the kinetic energy goes nto
the form of internal excitation energy of the target). Since the total energy is con-
served and momentum is conserved, the energy change resulting from’ the colli-
sion can be expressed as

<N

uv? oy

= +0. (3.112)

|

The so-called @ value of the melastic collision is clearly negative in magnitude,
but the sign convention is chosen to conform to that used in general for atomic
and nuclear reactions. From Eq. (3.112) the ratio of relative speeds before and
after collision can be written

1=\/1+’"_1+’"29, (3.113)
[2y) o E

where £ = %mvg is the energy of the incoming particle (in the laboratory sys-
tem), Thus, for inelastic scattering o becomes

n
o= .
ma /1 + —“',;:;m %

Not only are the scattering angles ¢ and © in general different in magnitude,
but the values of the differential scattering cross section depend upon which of
the two angles is used as the argument of o. The connection between the two
functional forms is obtained from the observation that in a particular experiment
the number of particles scattered into a given element of solid angle must be the
same whether we measure the event in terms of & or ©. As an equation, this
statement can be written

(inelastic scattering) (3.114)

2n1oi@)sin B dO| = 2x o' (#) sin ¢ dr?],
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or

de

sin® _|=G(®)\

sin ¢

d{cos ®)
d(cos®) |’

o'(%) = o(®)

75 3.115

where o’(#) is the differential scattering cross section expressed in terms of the
scattering angle in the Iaboratory system. The derivative can easily be evaluated
from Eq. (3.110), leading to the result

(1 +2pcos ® + p2)3/2

7'(9) =(®) 14 pcos®

(3.116)

Note that ¢ (®) is not the cross section an observer would measure in the
center-of-mass system. Both o (©) and ¢'(#) are cross sections measured in the
laboratory system; they are merely expressed in terms of different coordinates. An
observer fixed in the center-of-mass system would see a different flux density of
incident particles from that measured in the laboratory system. and this transfor-
mation of flux density would have to be included if (for some reason) we wanted
to relate the cross sections as measured in the two different systems.

The two scattering angles have a particularly simple relation for elastic scat-
tering when the two masses of particles are equal. It then follows that p = 1, and
from Eq. (3.110) we have

cos ¥ \/———1+COSG ose
= = —_—
2 27
or
e
P =—, =1).
> (=1

Thus, with equal masses, scattering angles greater than 90° cannot occur in the
laboratory system,; all the scattering is in the forward hemisphere. Correspond-
ingly, the scattering cross section is given in terms of ® from Eq. (3.116) as

o' (9) = deos§ - ¢ (©), 195%, (0 =1).

Even when the scattering is isotropic in terms of @, i.e., ¢(®) is constant, in-
dependent of ®, then the cross section in terms of # varies as the cosine of the
angle! When, however, the scattering mass m3 is very large compared to the inci-
dent particle mass m and the scattering is elastic, then from Eq. (3.111) p &~ 0,
$0 0’ (?) =~ ¢ () from Eq. (3.116).

We have seen that even in elastic collisions, where the total kinetic energy
remains constant, a collision with an initially stationary target results in a transfer
of kinetic energy to the target with a corresponding decrease in the kinetic energy
of the incident particle. In other words, the collision slows down the incident
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particle. The degree of slowing down can be obtained from Eq. (3.109) if v{ and
V are expressed in terms of vy by Eqs. (3.108) and (3.105), respectively:

o2 2
a3 - (L) (1 +20c0s® + p?) (3.117)
map
For elasuc collisions p = m;/m3, and Eq. (3.117) can be simplified to
El _1+2pcos® + p?
Eo  (I+pp

where Ej is the initial kinetic energy of the incident particle in the laboratory
system and E) the corresponding energy after scattering. When the particles are
of equal mass, this relation becomes

, (elastic collision) (3.117)

Eq 1+cos®

Ey 2
Thus, at the maximum scattering angle (& = m, ¢ = z/2), the incident particle
loses all its energy and is completely stopped in the laboratory system.

This transfer of kinetic energy by scatiering is, of course, the principle behind
the “moderator” in a thermal neutron reactor. Fast neutrons produced by fission
make successive elastic scatterings until their kinetic energy is reduced to thermal
energies, where they ars more liable to cause fission than Lo be captured. Clearly
the best moderators will be the light elements, ideally hydrogen (o = 1). For a
nuclear reactor, hydrogen is practical only when contained as part of a muxture
or compound, such as water. Other light elements useful for their moderating
properties include deuterium, of mass 2, and carbon, of mass 12. Hydrogen, as
present 1n paraffin, water, or plastics, is frequently used in the laboratory to slow
down neutrons.

Despite their current useful applications, these calculations of the transforma-
tion from laboratory to center of mass ccordinates, and of the transfer of kinetic
energy, are not particularly “modemn” or “quantum” in nature. Nor is the classi-
cal mechanics involved particularly advanced or difficult. All that has been used,
essentially, is the conservation of momentum and energy. Indeed, similar calcula-
tions may be found in freshman textbooks, usually in terms of clastic collisions
between, say, billiard balls. But it is their elementary natare that results in the
widespread validity of these calculations. So long as momentum is conversed (and
this will be true in quantum mechanics) and the Q value is known, the details of
the scattering process are irrelevant. In effect, the vicinity of the scattering par-
ticle 1s a “black box,” and we are concerned only with what goes in and what
comes out. It matters not at all whether the phenomena occurring inside the box
are “classical” or “quantum.” Consequently, the formulae of this section may be
used in the experimental analysis of phenomena essentially quanturn in nature,
as for example, neutron-proton scattering, so long as the energies are low enough
that relativistic effects may be neglected. (See Section 7.7 for a discussion of the
relativistic treatment of the kinematics of collisions.)

= cos .
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THE THREE-BODY PROBLEM

Thus far, we have treated integrable problems in which the equations of motion
can be integrated to give a closed-form solution. For the two-body case of the
inverse-square law, we found solutions involving motion in elliptic, parabolic,
and hyperbolic orbits, the former of which constitute closed orbuits. Solutions can
also be found for some additional power laws of the form V (r) = ar". Neverthe-
less, for almost all other possible central force potentials, the equations of motion
cannot be integrated. When one more mass is added, the situation becomes much
more complex. Even for inverse-square law torces, this three-body Kepler-type
problem has no known general solution. In the present section we shall examine
some simple examples of what happens when this third mass is added.

The Newtonian three-body problem involves three masses my, mg, and ms at
the respective positions ry, ry, and r3, interacting with each other via gravitational
forces. We assume that the position vectors rj, r, and r3 are expressed in the
center of mass system. It is easy to write the equation of motion of the first mass
since by Newton’s second law m ¥ equals the gravitational forces that the other
two masses exert on mj:

rn—nrn rn—-n

¥ =-Gm (3.118)

1 ————= — Gy ——
ey —1s)3 Iry —r3)3

and analogously for the other two masses. If we make use of the relative-position
vectors defined by

S, =, —I; (3.119)
in Fig. 3.27, then clearly

si+s8+s3=0. (3.120)

m . H
1 )
53

FIGURE 327 Position vectors s, = r, — ry for the three-body problem. Adapted from
Hestenes, New Foundations for Classical Mechanics, 1999, Fig. 5.1.
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After a little algebra, the equations of motion assume the symmetrical form

o 5
§ =-mG— +mG (3121)
s,

?

where i = 1, 2, 3, the quantity m is the sum of the three masses
m=my+my+ms3 (3122)

and the vector G is given by
G=G(—3+—3+—3). (3 123)

The three coupled equations in the symmetrical form, (3.121), cannot be solved in
general, but they do provide solutions to the three-body problem for some simple
cases.

There is a solution due to Euler in which mass m> always lies on the straight
line between the other two masses so that ry, ra, I3, S, S2, 83, and G are all
collinear. Figure 3.28 shows Euler’s negative-energy (i.e., bound-state) solution
for the mass ratio m; < ms < ms in which the masses move along confocal
ellipses with the same period t. During each period, the masses pass through
both a perihelion configuration, in which they lie close together along the axis of
the ellipses, and an aphelion configuration, in which they lie along this same axis
but far apart. The aphelion positions in the orbits are indicated in Figure 3.28.

If the vector G = 0. the equations of motion decouple, end Eq. (3.121) reduces
to the two-body form of the Kepler problem,

§ = —m(is—;,
Sl

(3.124)

with each mass moving along an elliptical orbit lying in the same plane with the
same focal point and the same period. This decoupling occurs when the three

my

iy

FIGURE 3.28 Euler’s collinear solution to the three-body problem for the mass ra-
1io my; < ma2 < ms3. Three of the dots show aphelion positions. Adapted from Hes-
tenes, New Foundations for Classical Mechanics, 1999, Fig. 5.2
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K]

»”y Iy \/MI

FIGURE 3.29 [agrange's equilateral trianglz solution to the three-body problem for
the mass ratio m; < my < mjs. Adapted from Hestenes, New Foundations for Classi-
eal Mechanees, 1999. Fig. 5 3.

masses are at the vertices of an equilateral triangle. As the motion proceeds, the
equations remain uncoupled so the equilateral triangle condition continues to be
satisfied, but the triangle changes in size and orientation. Figure 3.29 presents La-
grange's elliptic solution case with the same mass ratio as before, m; < mz < ms.
The figurc shows the configuration when the masses arc close together, each at its
respective perihelion point, and also indicates the analogous aphelion arrange-
ment.

Various asymptotic solutions have been worked out for the three-body prob-
lem. For example, if the total energy is positive, then all three masses can move
away from each other, or one can escape, carrying away most of the eneigy, and
leave the other twu behind in clliptic otbits. If the eneigy 1s negative, one can
escape and leave the other two in a bound state, or all three can move in bound
orbits.

The restricted three-body problem is one in which two of the masses are large
and bound, and the third is small and merely perturbs the motion of the other two.
Examples are a spacecraft in orbit between Earth and the Moon, or the pertur-
bation of the Sun on the Moon's orbit. In the spacecrall case, the first approach
is to assume that the Earth and Moon move in their unperturbed orbits, and the
satellite interacts with them through their respective inverse-square gravitational
forces. We should also note that satellites orbiting Earth at altitudes of 90 miles
or 150 kilometers have their orbits perturbed by Earth’s nonspherical mass distri-
bution.
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A complicating factor in the restricted three-body problem is the distribution
of gravitational potential energy in the vicinity of the Earthb-Moon system. Close
to Earth, we experience a gravitational force directed toward Earth, and close to
the Moon, the force is directed toward the Moon. This means that the equipoten-
tials, or curves of constant gravitauonal energy, are closed curves that encircle
the Earth, (m,) and Moon, (m»), respectively, as shown in Fig. 3.30. In contrast
to thus, far from the Earth and Moon, the equipotentials encircle the Earth—-Moon
pair, as shown in the figure. At some point, called Lagrange point L, along the
horizontal line in the figure between the Earth and Moon, the attraction to the two
bodies is equal in magnitude and opposite in direction so the force experienced by
a small mass placed there is zero. In other words, L3 is a local potential minimum
along this line. More precisely, this point is a saddle poin: because the potential
energy is a minimum only along the Earth-Moon axis, and decreases in directions
perpendicular to this axis. Two other Lagrange points, L; and L3, along this same
axis between the Earth and Moon are located at the transition points between or-
bats that encircle the Earth and the Moon individually, and orbits that encircle the

FIGURE 3.30 Contour map of equipotential curves of two masses m); > mg plotted in
a reference system rotating with the two masses around each other. From Hestenes, New
Foundations for Classtea' Mechanics, 1986, Fig. 5.5.
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two together as a pair. These are also saddle points. The fourth and fifth Lagrange
points, L4 and Ls, which are not collinear with the other three, correspond to lo-
cal minima in the gravitational potential energy. Masses in the vicinity of these
two points experience a force of attraction toward them, and can find themselves
in stable elliptical-shaped orbits around them.

We can venify the preceding statements by considering the solutions found
in Sections 3.7 and 3.8 for two massive bodies in the center-of-mass frame and
asking if there are locations where a small test body will remain at rest relative 1o
the two bodies. By a test body we mean one whose mass is sufficiently small that
we can neglect its effect on the motions of the other two bodies. For simplicity,
we will limit our attention to the restricted case where the bodies undergo circular
motion about the center of mass. The Lagrangian for the monon of the test mass,
m, can be written, in general, as

L=3im@?+r28% - V(0e,0), (3.125)

where V(r, 8, t) is the time-dependent potential due to the two massive bodies.

As a consequence of the circular motion. the radius vector, r, between the two
bodies is of constant length and rotates with a constant frequency, w, in the inertial
frame. If we go to a coordinate system rotating at the frequency, the two massive
bodies appear to be at rest and we can write the Lagrangian in terms of the rotating
system hy using A° = 8+t as the transformation to the rotating frame Thus, the
Lagrangian in the rotating coordinates can be written in terms of the cylindrical
coordinates, p, 8 = 8’ — wt, and z, with p being the distance from the center
of mass and # the counterclockwise angle from the line joining the two masses
shown in Fig. 3.30. So

L

Im (57 + 02 - )+ 22) — V', 6, 2), (3.126)
or
L=1im(p"+ 06"+ - (mwpzé' — Imp?e® +V'(p, 8, z)) AV

The fifth and sixth terms are the potentials for the Coriolis effect (cf. Section 4.10)
and the centrifugal effect, respectively.

The procedure then is to find the Lagrange equations and look for solutions
with the conditions that p = z = § = 0. The solutions are the five Lagrange
points shown in Fig. 3.30. Stability can be determined by investigating the ef-
fects of small displacements from these positions nsing the methads discussed in
Chapters 6 and 12. Only L4 and L5 are stable.

Even though the L; point is not stable against displacements along the line
between the masses, it has been useful for swudies of the Sun. The L5 between the
Earth and Sun is the approximate location in the 1990s for the solar and helio-
spheric observatory, SOHO, which orbits the L, point 1n a plane perpendicular o
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the Earth-Sun line. The satellite cannot be exactly at the L2 point, or we could
not receive its transmissions against the bright Sun. Small steering rockets correct
for the slow drift toward, or away from, L;.

DERIVATIONS

1. Consider a system in which the Lotal forces acting on the parncles consist of conserva-
uve forces F; and frictional forces f; proportional to the velocity. Show that for such
a system the virial theorem holds 1n the torm

=
T = —§‘ZF[ I,

providing the motion reaches a steady state and is not allowed to die down as a result
of the frictional forces.

2. By expanding e sy in a Fourier series in wt, show that Kepler’s equation has the
formatl solution

X2
Y = wt +,,Z_:l ;Jn(ne) s wt,

where Jy 15 the Bessel function of order #. For small argument, the Bessel tunction
can be approximated in a power series of the argument. Accordingly, from this result
derive the first few terms in the expansion of ¥ in powers of ¢.

3. Ifthe difference y — wt is represented by p, Kepler’s equation can be written
p = esin(wt + p).

Successive approximations to p can be obtained by expanding sin p in a Taylor series
m p, and then replacing p by its expression given by Keplet’s equation. Show that the
first approximation by p is py, given by

an esin wt
L= ecoswt’

and that the next approximation 1s found from
sinfpy — p1) = —e’ sin(r + p1)(L + ecoswi),

an expression that is accurate through terms of order e*.

4. Show that for repulsive scattering, Eq. (3.96) for the angle of scattering as a tunction
of the impact parameter, s, can be rewntten as

1
@=n—%/
"y

pdp

% (1-F) -2 _p)
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6.

or

dp

O=mr—4s

fo \/;f% (V rm) = V() + 522 — p2)

by changing the variable of integration to some function p(r). Show that for a re-
pulsive potential the integrand is never singular in the limit » — ry. Because of
the definite hmits of integration, these formulations have advantages for numerncal
calculattons of ©(s) and allow naturally for the use of Gauss-Legendre quadrature
schemcs.

Apply the formulation of the preceding exercise to compute numerically ©(s) and the
differential cross section of o (©) for the repulsive potential

_ %
T 14y

and for a total energy £ = 1.2V. It is suggested that 16-point Gauss-Legendre
quadrature will give adeguate accuracy. Does the scattering exhibit a rainbow?

If a repulsive potential drops of monotonically with », then for energies high com-
pared :0 V(1) the angle of scattering will be small. Under these conditions show that
Eq. (397) can be manipulated so that the defiection angle 1s given approximately by

_ 1 Y Vum) = V@) dy
T EJo  q-y»i2

where y, obviously, 18 u/up.
Show further, that if V (u) 15 of the form Cu”, where n is a positive integer, then in
the high-energy limit the cross section is proportional to @—2U+1in),

(a) Show that the angle of recoil of the target particle relative to the incident direction
of the scattered particle is simply ¢ = 5 (71' - ).

{b) It s observed that in elastic scattering the scattering cross section is isotropic in
terms of ©. What are the corresponding probability distributions for the scattered
energy of the incident particle, E1, and for the recoil energy of the target particle,
Ey?

Show that the angle of scattering in the laboratory system, =, is related to the energy
before scattering, Eg, and the energy after scattering E, according to the equation

cos g = M2 tm _ma—m Eo _ma@
T 2m1 2m1 2m1.,/E0E

Show that the central force problem 1s soluble in terms of elliptic functions when the
force 15 a power-law function of the distance with the following fractional exponents:
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EXERCISES

10.

11.

12

13.

14.

15.

A planet of mass M s in an orbit of eccentricity e = 1 — & whele ¢ <« 1, about the
Sun. Assume the motion of the Sun can be neglected and that only gravitational forces
act. When the plaret 1s at its greatest distance from the Sun, 1t is struck by a comet of
mass m. where m <« M traveling in a tangential direction. Assuming the collision is
completely inelastic, find the minimum kinetic energy the comet must have to change
the new orbit to a patabola.

Two particles move zbout each other 1n curcular orbits under the influence of gravita-
tional forces, with a seriod 7. Their motion is suddeniy stopped at a given nstant of
time, and they are then released and allowed to fall into each other. Prove that they
collide after a time 7/4+/2.

Suppose that there are long-range interactions between atoms in a gas in the form of
central forces derivable from a potential

k
U(l)— r—m

where r 15 the distance between any pair of atoms and m is a positive integer. Assume
further that relative to any given atom the other atoms are distributed in space such
that their volume densily 18 given by the Boltzmann factor:

r

N _
Py =7e 1) /AT

where N 15 the total number of atoms 1n 2 volume V', Find the addition o the vinal of
Clausius resulting from these forces between pairs of atoms, and compute the resulting
currection to Boyle's law, Take N so large that sums may be replaced by integrals

While closed results can be found for any positive m, if desired, the mathematics can
be simplified by taking m = +1

(a) Show that1f a particle describes a circular orbit under the influence of an attractive
central force directed ioward a point on the circle, then the force varies as the
inverse-fifth power of the distance.

(b) Show that for the orbit described the total energy of the particle is zero.
(c) Find the period of the rotion.

(d) Find *, ¥, and v as a function of angle around the circle and show that all three
quantities are infinite as the particle goes through the center of force.

(a) For circular and parabolic orbits in an attractive 1/ potential having the same
angular momentum, show that the perihelion distance of the parabola 1s one-half
the radius of the circle.

(b) Prove that in the same central force us in part (a) the speed of a particle at any
point in a parabolic orbit is +/2 times the speed in a circular orbit passing through
the same point.

A meteor is observed to strike Earth with a speed v. making an angle ¢ with the
zenith, Suppose that far from Earth the meteor’s specd was v’ and il was proceeding
in a direction making a zenith angle ¢', the etfect ot Earth’s gravity being to pull itinto
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16.

17.

18.

19.

20.

a hyperbolic orbil intersecting Earth’s surface. Show how v’ and ¢’ can be determined
from v and ¢ 1n terms of known constants.

Prove that in a Kepler elliptic orbit with small eccentricity ¢ the angular motion of
a particle as vicwed from the empty focus of the cllipsc is uniform (the empty focus
is the focus that is not the center of attraction) to first order in e. It is this theorem
that enables the Ptolemaic picture of planstary motion to be a reasonably accurate
approximation. On this picture the Sun is assumed to move uniformly on a circle
whose center 1s shifted from Earth by a distance called the equant. If the equant is
taken as the distance between the two foci of the correct elliptical orbit, then the
angular motion is thus described by the Ptolemaic picture accurately to first order 1n
e.

One classic theme n science fiction is a twin planet (“Planet X) to Earth that is
identical in mass, epergy, and momentum but is located on the orbit 90° out of phase
with Earth so that 1t is lndden from the Sun. However, because of the elliptical nature
of the orbit, it 15 not always completely hidden. Assume this twin planet 15 1n the
same Keplenan orbit as Earth in such a manner than it is in aphelior when Earth
15 in perihelion. Calculate to first order in the eccentricity ¢ the maximum angular
separation of the twin and the Sun as viewed from the Earth. Could such a twin be
visible from Earth? Suppose the twin planel 1s 1 an elliptical orbit having the same
size and shape as that of Earth, but rotated 180° from Earth’s corbit, so that Earth and
the twin are (n perihelion at the same time. Repeat your calculation and compare the
visibility 1n the two sitvations.

At perigee of an elliptic gravitalional orbit a particle expertences an impuise S (cf.
Exercise 11, Chapter 2) in the racial direction, sending the particle into another elliptic
orbit. Determine the new semimajor axis, eccentricity, and orientation in terms of the
old

A particle moves in a force field described by
k !
Py =% exp (1),
(") ) exp | =~

where % and a are positive.

(a) Write the equation: of motion and reduce them to the equivalent one-dimensional
problem. Use the effective potential to discuss the qualitative nature of the orbits
for different values of the energy and the angular momentum.

(b) Show that if the orbit is nearly circular, the apsides will advance approximately
by wpe/a per revolution, where p is the radius of the circular orbit.

A uniform distribution of dust 1n the solar system adds to the gravitational attraction
of the Sun on a planet an additional force

F= —'flCl‘,

where m is the mass of the planet, C is a constant proportional to the gravitational
constant and the density of the dust, and r is the radius vectar from the Sun to the
planet (both considered as points). This additional force is very small compared to the
direct Sun—planet gravitational force.
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21.

22.

25.

(m) Calculate the petiod for a circular orbit of radius rq of the planet in this combized
field.

(b) Calculate the petiod of radial oscillations for slight disturbances from this circular
orbit.

() Show that nearly circular orbits can be approximated by a precessing ellipse and
find the precession frequency. Is the precession in the same Or opposite direction
to the orbital angular velocity?

Show that the motion of a particle in the potential field

kK  h
Vin=—-——+ =
(9] L
1$ the same as that of the motion under the Kepler potential alone when expressed in
terms of a coordinate system rotating or precessing around the center of force.
For negative total energy, show that if the additional potential term 1s very small
compared to the Kepler potential, then the angular speed of precession of the ellipucal
orhit i<

2xmh
127

Q= .
The perthelion of Mercury is observed to precess (after correction for known planetary
perturbations) at the rate of about 40” of arc per century. Show that this precession
could be accounted for classically if the dimensionless quantity

_ h
m= ka
(which is a measure of the perturbing inverse-square potential relative to the gravita-
tional potential) were as small as 7 x 108, (The eccentricity of Mercury’s orbit 1s
0.206, and its period is (.24 year.)

The additional term 1n the potential behaving as »~2 in Exercise 21 looks very much
like the centrifugal barrier term in the equivalent one-dimensional potential. Why 1s it
then that the additional force term causes a precession of the orbit, while an addition
to the barrier, through a change in !, does not?

. Evaluate approximately the ratio of mass of the Sun to that of Earth, using only the

lengths of the year and of the lunar month (27.3 days), and the mean radii of Earth’s
orbit (1.49 x 108 km) and of the Moon's orbit (3.8 x 10° km).

. Show that for elliptical motion 1n a gravitational field the radial speed can be written

as

. wa
F=—yale? — (r —a)?.
r
Introduce the eccentric anomaly variable v in place of r and show that the resulting

differential equation in ¥ can be integrated immediately to give Kepler’s equation.

If the eccentricity ¢ is small, Kepler’s equation for the eccentric anomaly ¥ as a func-
tion of wt, Eq. (3.76), is easily solved on a computer by an iterative technique that
treats the esint term as of lower order than . Denoting ¥, by the nth iterative
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26.

27.

28.

29.

30.

31.

solution, the obvious iteration relation is
¥n = wt +esin,_;.

Using this iteration procedure, find the analytic form for an expansion of 4 in powers
of e at least through terms in e3.

Earth’s period between successive perihelion transits (the “anomalistic year™) 15
365.2596 mean solar days, and the eccentricity of its orbit is 0.0167504. Assuming
motion in a Keplerian elliptical orbit, how far does the Earth move in angle in the
otbit, starting from perihelion, in a time equal to one-quarter of the anomalistic year?
Give your result in degrees to an accuracy of one second of arc or better. Any method
may be used, including numencal computation with a calculator or computer.

In hyperbolic motion in a 1/r potential, the analogue of the eccentric anomaly 15
defined by

r =a(ecosh F — 1),

where a(e — 1) is the distance of closest appioach. Find the analogue to Kepler’s
equation giving t from the time of closest approach as a function of F.

A magneltic monopole is defined (if one exists) by a magnetic field singularity of the
form B = br/r>, where b is a constant (a measure of the magnetic charge, as it were).
Suppose a particle of mass m moves in the field of a magnetic monopole and a central
force field derived from the potential V(r) = —k/r.

(2) Find the form ot Newton’s equation of motion, using the Lorentz force given by
Eq. (1.60) By locking at the product ¢ x p show that while the mechanical angular
momentum is not conserved (the field of force is nonceniral) there is a conserved
vector

(1) By paralleling the steps leading from Eq. (3.79) to Eq. (3.82), show that for some
J(r) there 1s a conserved vector analogous to the Laplace-Runge-Lenz vectcr in
which I plays the same role as L in the pure Kepler force problem.

If &l the momentum vectors of a patticle along its trajectory are translated so as to
start from the center of force, then the heads of the vectors trace out the particle’s
hodograph, a locus curve of considerable antiquity in the history of mechames, with
somcthing of a reviva in connection with space vehicle dynamics. By taking the c-oss
product of L with the Laplace-Runge-Lenz vector A, show that the hodograph for
elliptical Kepler motion is a circle of radiwus mk/! with origin on the y axis displaced
adistance A/! from the center of force.

What changes, if any, would there be in Rutherford scattering if the Coulomb force
were attractive, instead of repulsive?

Exarmine the scattering produced by a repulsive central force f = kr~?. Show that
the differential cross section is given by

k (1—x)dx
2F x2(2 — x)2sinmx’

where x is the ratio of ® /& and E 15 the energy.

(@) de =
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32.

33.

.

3s.

A central force potential frequently encountered in nuclear physics 1s the rectangular
well, defined by the potential

V=0 rF>a
==V r<a,

Show that the scattering produced by such a potential in classical mechanics is iden-
tical with the refraction of light rays by a sphere of radius a and relative index of

refraction
E+Vy
n= 1/ .
E

{This equivalence demonstrates why it was possible to explain refraction phenomena
both by Huygen’s waves and by Newton’s mechamical corpuscles.) Show also that the
differential cross section 1s

n2a? (n cos % - l) (n — cos %)

) 3
4cos 3 (1 +n2 —2ncos %)

o®) =

What is the total cross section?

A particle of mass m is constrained to move under gravity without friction on the
mside of a paraboloid of revolution whosz axis 1s vertical Find the ane-dimensional
problem equivalent to its motion. What is the condition on the particle’s initial velocity
to produce circular motion? Find the penod of small oscillations about this circulas
motion,

Consider a truncated repulsive Coulomb potential defined as

k

V = r>a
r
k

= - r<a
a

For a particle of total energy E > k/a, obtain expressions for the scattering angle ©
as a function of s5/sg, where sq is the impact parameter for which the periapsis occurs
at the point » = g. (The formulas can be given in closed form but they are not simple!)
Make a numerical plot of @ versus s /sq for the special case E = 2k /a. Whai can you
deduce about the angular scattening cross section from the dependence of @ on s/sg
for this particular case?

Another version of the truncated Coulomb potential has the form

A
V=E—— r>ua

r @
=0 r <a.

Obtain closed-form expressions for the scattering angle and the differential scattering
cross section. These are most conveniently expressed in terms of a parameter measur-
ing the distance of closest approach in units of a. What is the total cross section?
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36. The restricted three-body problem consists of two masses mn circular orbits about each
other and a third body of much smaller mass whose effect on the two larger bodies
can be neglected.

(a) Nefine an effective pntential V(x, v) for this problem where the x axis is the l1ne
of the two larger masses Sketch the function V (x, 0) and show that there are two
“valleys” {points of stable equilibrium) corresponding to the two masses. Also
show that there are three “hills” (three points of unstable equilibrium).

(b) Using a computer program, calculate some orbits for the restncted three-body
problem. Many orbits will end with ejection of the smaller mass. Start by assum-
ing a position and a vector velocity for the small mass.



CHAPTER

134

41 m

The Kinematics of
Rigid Body Motion

A rigid body was defined previously as a system of mass points subject to the
holonomic constraints that the distances between all pairs of points remain con-
stant throughout the motion. Although something of an idealization, the concept
is quite useful, and the mechanics of rigid body motion deserves a full exposition.
In this chapter we shall discuss principally the kinematics of rigid bodies, 1e.,
the nature and characteristics of their motions. We devote some time to develop-
1ng the mathematical techniques involved, which are of considerable interest in
themselves, and have many important applications to other fields of physics.

Of essential importance is the rotational motion of a rigid body. These consid-
erations lead directly to the relation between the time rate of change of a vector
in an 1nertial frame and the time rate of change of the same vector in a rotating
frame. Since it is appropriate at that point, we leave kinematics and develop the
description of the dynamics of motion in a rotating frame. In the next chapter we
discuss, using the Lagrangian formulation, how the motion of extended objects is
generated by applied forces and torques.

THE INDEPENDENT COORDINATES OF A RIGID BODY

Before discussing the motion of a rigid body, we must first establish how many
independent coordinates are necessary to specify its configuration. From experi-
ence, we expect that there should be six independent coordinates. Three external
coordinates are needed to specify the position of some reference point in the body
and three more to specify how the body is oriented with respect to the extemal
coordinates. In this section we show that these intuitive expectations are correct.

A rigid body with N particles can at most have 3N degrees of freedom, but
these are greatly reduced by the constraints, which can be expressed as equations
of the form

riy; = ¢ij. 4.1)

Here r,; is the distance between the ith and jth particles and the ¢’s are constants.
The actual number of degrees of freedom cannot be obtained simply by subtract-
ing the number of constraint equations from 3N, for there are %N (N —1) possible
equations of the form of Eq. (4.1), which is far greater than 3N for large N. In
truth, the Eqs. (4.1) are not all independent.
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FIGURE4.1 The location of a point in a ngid body by its distances from three reference
points.

To fix a point in the rigid body, it is not necessary to specify its distances to
all other points in the body; we need only state the distances to any three other
noncollinear points (cf. Fig. 4.1). Thus, once the positions of three of the particles
of the rigid body are determined, the constraints fix the positions of all remaining
particles. The number of degrees of freedom therefore cannot be more than nine
But the three reference pomnts are themselves not independent; there are in fact
three equations of rigid constraint imposed on them,

riz2 =cre2, r23 =23, ri3 =ci3,

that reduce the number of degrees of freedom to six. That only six coordinates
are needed can also be seen from the following considerations. To establish the
position of one of the reference points, three coordinates must be supplied. But
once point 1 is fixed, point 2 can be specified by only two coordinates, since it is
constrained to move on the surface of a sphere centered at point 1. With these two
points deleninined, point 3 has only one degree of freedom, for it can only rotate
about the axis joining the other two points. Hence, a total of six coordinates is
sufficient.

A rigid body in space thus needs six independent generalized coordinates to
specify its configuration, no matter how many particles it may contain—even in
the limit of a continuous body. Of course, there may be additicnal constraints on
the body besides the constraint of rigidity. For example, the body may be con-
strained to move on a surface, or with one point fixed. In such case, the additional
constraints will further reduce the number of degrees of freedom, and hence the
number of independent coordinates.

How shall these coordinates be assigned” Note that the set of configuration
of a rigid body is completely specified by locating a Cartesian set of coordinates
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™~
N

FIGURE 4.2 Unprimed axes represent an exiernal reference set of axes: the primed axes
are fixed 1n the rigid body.

fixed in the rigid body (the primed axes shown in Fig. 4.2) relative to the coor-
dinate axes of the external space. Clearly three of the coordinates are needeé to
specify the coordinates of the origin of this “body” set of axes. The remaining
three coordinates must then specify the orientation of the primed axes relative to
a coordinate system parallel to the external axes, but with the same origin as the
primed axes.

There are many ways of specifying the orientation of a Cartesian set of axes
relative to another set with common origin. One fruitful procedure is to state the
direction cosines of the primed axes relative to the unprimed. Thus, the x” axis
could be specified by its three direction cosines &1, a2, &3, with respect to the x,
y, z axes. If, as customary, i, j, k are three unit vectors along x, y, z, and ¥/, j'. K’

perform the same function in the primed system (cf. Fig. 4.3, then these direction
cosines are defined as

Z= Xy

0 hx
b5, Y =X

K 8,y ¥
B2
6 i y=45
o
i o
x = x
;7Xx= xl

FIGURE 4.3 Direction cosines of the body szt of axes relative to an external set of axes.
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cosfiy = cos(i’ +i) =1 i=i.V
cosfiz =cos(i +=i-j=j-i
cosfy =cos(§ i) —j.i—i-§

cosfp =cos(f' - j)=§-j=3-§ (4.2)

and similarly for cos 83, cos 83, etc. Note that the angle 6,; is defined so that
the first index refers to the primed system and the second index to the unprimed
system. These direction cosines can also be used to express the unit vector in the
primed system in terms of the unit vectors of the unprimed system giving

i’ = cosf1i + cosBy2j + cos B3k
J = 086031 + cos Braj + cos Pk
K = cosf3;i + cos B3 + cos 33k, “4.3)

These sets of nine directions cosines then completely specify the orientation of
the x’, y’, 7’ axes relative 1o the x, y, z set. We can equally well invert the process,
and use the direction cosines to express the i, j, K unit vectors in terms of their
components along the primed axes. Thus, we can write

r—xi+yj+zk=x¥+yj+7¥% (4.4)
by

x' = (r«i) = cosfiix +cosizy + cosf)3z
¥y = (r-J) = cosfax + cosfry + cos Fraz

7 = (r-K') = cosf3x 4 cosH32y + cos 8332 (4.5)

with analogous equations for i, j and k.

The direction cosines also furnish directly the relations between the coordi-
nates of a given point in one system and the coordinates in the other system.
Thus, the coordinates of a point in a given reference frame are the components of
the position vector, r, along the primed and unprimed axes of the system, respec-
tively. The primed coordinates are then given in terms of x, y, and z, as shown in
Eq. (4.5). What has been done here for the components of the r vector can obvi-
ously be done for any arbitrary vector. If G is some vector, then the component of
G along the x’ axis will be related to its x-, y-, z-components by

G, =G 1 =cos0(1Gy + cos12Gy + cos 013G, (4.6)

and so on. The set of nine direction cosines thus completely spells out the trans-
formation between the two coordinate systems.

If the primed axes are taken as fixed in the body, then the nine direction cosines
will be functions of time as the body changes its orientation in the course of the
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motion. In this sense, the direction cosines can be considered as coordinates de-
scribing the instantaneous orientation of the body, relative to a coordinate system
fixed in space but with origin in common with the body system. But, clearly, they
are not independent coordinates, for there are nine of them and it has been shown
that only three coordinates are needed to specify an orientation.

The connections between the direction cosines arise from the fact that the basis
vectors in both coordinate systems are orthogonal to each other and have unit
magnitude; in symbols,

i-j=j-k=k-.i=0,
and 4.7)
i-i=j-j=k-k=1,

with similar relations fori’, j’, and K’. We can obtain the conditions satisfied by the
nine coefficients by forming all possible dot products among the three equations
fori,j, and k in terms of i', §', and k' (as in Eq. (4.4)), making use of the Egs. (4.7):

3

Ecos By COS Oy = 0 m#m

= @4.8)

3
Z cosZOm = 1.
I=1

These two sets of three equations each are exactly sufficient to reduce the number
of independent quantities from nine to three. Formally, the six equations can be
combined into one by using the Kronecker §-symbol §;,,, defined by

31m=1 l=m
=0 L £m.

Equations (4.8) can then be written as

3
Z COS Oy’ COS B = Spiiim 4.9)
=1

It is therefore not possible to set up a Lagrangian and subsequent equations
of motion with the nine direction cosines as generalized coordinates. For this
purpose, we must use some set of three independent functions of the direction
cosines. A number of such sets of independent variables will be described later,
the most important being the Euler angles. The use of direction cosines to de-
scribe the connections between two Cartesian coordinate systems nevertheless has
a number of important advantages. With their aid, many of the theorems about the
motion of rigid bodies ¢an be expressed with great elegance and generality, and in
a form naturally leading to the procedures used in special relativity and quantum
mechanics. Such a mode of description therefore merits an extended discussion
here.



4.2 Orthogonal Transformations 139
4.2 B ORTHOGONAL TRANSFORMATIONS

To study the properties of the nine direction cosines with greater ease, it is con-
venient to change the notation and denote all coordinates by x, distinguishing the
axes by subscripts:

X —r X
y—> x2 {4.10)

Z—> X3
as shown in Fig. 4.3. We also change the notation for the direction cosines to
a,; = cosf,; (4.1D)

Equations (4.5) and (4.6) constitute a group of transformation equations from
a set of coordinates xj, x;, x3 to a new set x7, xé, xé. In particular, they form an
example of a linear or vector transformation, defined by transformation equations
of the form

x1 = a1ix1 + aj2x2 + a13x3

x5 =az\x] + a2x2 + a23x3 4.12)

x3 = az1x1 + a3 %2 + a33x3,
where the a;, ay2, ..., are any set of constant (independent of x, x”) coeffi-
cients.* To simplify the appearance of many of the expressions, we will also make
use of the summation convention first introduced by Einstein: Whenever an index
occurs two or more times in a term, it is implied, without any further symbols, that

the terms are to be summed over all possible values of the index. Thus, Egs. (4.12)
can be written most compactly in accordance with this convention as

x| =ayx;,, i=1,2,3 4.12)

The repeated appearance of the index j indicates that the left-hand side of
Eq. (4.12) is a sum over the dummy index j for all possible values (here, j =1,
2, 3). Some ambiguity is possible where powers of an indexed quantity occur, and
for that reason, an expression such as

2
D%
1
appears under the summation convention as

X Xi.

*Equations (4.12) of course are not the most general set of transformation equations, ¢f., for example,
those from the 1’'s to the g’s (1-38).
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For the rest of the book the summation convention should be automatically
assumed in reading the equations unless otherwise explicitly indicated. Where
convenient, or to remove ambiguity, the summation sign may be occasionally
displayed explicitly, e.g., when certain values of the index are to be excluded
from the summation.

The transformation represented by Eqs. (4.11) is only a special case of the gen-
eral linear transformation, Eqgs. (4.12), since the direction cosines are not all inde-
pendent. The connections between the coefficients, Eqgs. (4.8) aie rederived here
in terms of the newer notation. Since both coordinate systems are Cartesian, the
magnitude of a vector is given in terms of the sum of squares of the components.
Further, since the actual vector remains unchanged no matter which coordinate
system is used, the magnitude of the vector must be the same in both systems In
symbols, we can state the invariance of the magnitude as

X)X, = X% 4.13)
The lefl-hand side of Eq. (4.13) is therefore

@y QL Xy X
and it will reduce to the right-hand side of Eq. (4.13), if, and only if

=1 j=k
=0 J#k, (4.14)

or, in a more compact form, if
ajai; = 8k, k=123 (4.15)

When the a,; coethcients are expressed in terms of the direction cosines, the six
equations contained in Eq. (4.15) become identical with the Egs. (4.9).

Any linear transformation, Eq. (4.12), that has the properties required by
Eq. (4 15) is called an orthogonal transformation, and Eq. (4.15) itself is known
as the orthogonality condition. Thus, the transition from coordinates fixed in
space to coordinates fixed in the rigid body (with common origin) is accom-
plished by means of an orthogonal transformation. The array of transformation
quantities (the direction cosines), written as

an a4 a3
az ax ax |, (4.16)
31 a3y an

is called the matrix of transformation, and will be denoted by a capital letter A.
The quantities a,; are correspondingly known as the matrix elements of the trans-
formation.

To make these formal considerations more meaningful, consider the simple ex-
ample of motion in a plane, so that we are restricted to two-dimensional rotations,
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and the transformation matrix reduces to the form

aj1 ap 0
an axn 0
0 0 1

141

The four matrix elements, g, 1, are connected by three orthogonality conditions:

a;Ja,k=6]k, j$k= 1329

and therefore only one independent parameter is needed to specify the transfor-
mation. But this conclusion is not surprising, A two-dimensional transformation
from one Cartesian coordinate system 1o another corresponds to a rotation of the
axes in the plane (cf. Fig. 4.4), and such a rotation can be specified completely by
only one quantity, the rotation angle ¢. Expressed in terms of this single parame-

ter, the wransformation equations become

=xjcos¢g +xs8ing

X3,

The mawrix elements are therefore

ay) = cos¢ di2 =sing
azp = —sing¢ azy =cos ¢
azi =0 azyy =0

so that the matrix A can be written

X
p)
X2

I
X
Xy = —x Sing + x; cos
I
x4

aj3 =0
an =0 4.17
ay =1,

X

FIGURE 4.4 Rotation of the coordinate axes, as equivalent to twc-dimensional orthog-

onal transformation.
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cos¢ sing O
A= | —sing cos¢ O 4.17)
0 0 1

The three nontrivial orthogonality conditions expand 1nto the equations

anan +ayaz =1
aaiz +anan =1

aja12 + anap = 0.

These conditions are obviously satisfied by the matrix (4-17’), for in terms of the
matrix elements (4.17) they reduce to the identities

cos2¢+sin2¢ =1
sin ¢ + cos* ¢ = 1
cos ¢ sing — sin¢g cos ¢ = 0.

The transformation matrix A can be thought of as an operator that, acting
on the unprimed system, transforms it into the primed system. Symbolically, the
process might be written

(r)' = Ar, {4.18)

which is to be read: The matrix A operating on the components of a vector in the
unprimed system yields the components of the vector in the primed system, Note
that in the development of the subject so far, A acts on the coordinate system only,
the vector is unchanged, and we ask merely for its components in two different
coordinate frames. Parentheses have therefore been placed around r on the left in
Eq. (4.18) to make clear that the same vector is involved on both sides on the equa-
tion. Only the components have changed. In three dimensicns, the transformation
of coordinates, as shown earlier, is simply a rotation, and A is then identical with
the rotation operator in a plane.

Despite this, note that without changing the formal mathematics, A can also be
thought of as an operator acting on the vecfor r, changing it to a different vector r’:

r =Ar, (4.19)

with both vectors expressed in the same coordinate system. Thus, in two dimen-
sions, instead of rotating the coordinate system counterclockwise, we can rotate
the veetor r clockwise by an angle ¢ to a new vector r’, as shown in [ig. 4.5. The
components of the new vector will then be related to the components of the old
by the same Egs. (4.12) that describe the transformation of coordinates, From a
formal standpoint, it is therefore not necessary to use parentheses in Eq. (4.18);
rather, it can be written as in Eq. (4.19) and interpreted equally as an operation on
the coordinate system or on the vector. The algebra remains the same no matter
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X2

FIGURE 4.5 Interpretation of an orthogonal transformation as a rotation of the vector,
leaving the coordinate system unchanged.

which of these two points of view is followed. The interpretation as an operator
acting on the coordinates is the more pertinent one when using the orthogonal
transformation to specify the orientation of a rigid body. On the other hand, the
notion of an operator changing one vector into another has the more widespread
application. In the mathematical discussion either interpretation will be freely
used, as suits the convenience of the situation. Of course, note that the nature
of the operation represented by A will change according to which interpretation
is selected. Thus, if A corresponds to a counterclockwise rotation by an angle ¢
when applied to the coordinate system, it will correspond to a clockwise rotation
when applied to the vector.

The same duality of roles often occurs with other types of coordinate transfor-
mations that are more general than orthogonal transformations. They may at times
be looked on as affecting only the coordinate system, expressing some given quan-
tity or function in terms of a new coordinate system. At other times, they may be
considered as operating on the quantity or fanctions themselves, changing them to
new quantities in the same coordinate system. When the transformation is taken
as acting only on the coordinatc systcm, we spcak of the passive rolc of the trans-
formation. In the active sense, the transformation is looked on as changing the
vector or other physical quantity. These alternative interpretations of a transfor-
mation will be encountered in various formulations of classical mechanics to be
considered below (cf. Chapter 9) and indeed occur in many fields of physics.

To develop further the kinematics of rigid body motion about a fixed origin, we
shall make much use of the algebra governing the manipulation of the transforma-
tion matrix. The following section is therefore a brief summary of the elementary
aspects of matrix algebra with specific application to orthcgonal matrices. For
those unacquainted with this branch of mathematics, the section should provide
an introduction adequate for the immediate purpose. The material also details the
particular terminology and notation we will employ. Those already thoroughly fa-



144

4.3 1

Chapter 4 The Kinematics of Rigid Body Motion

miliar with matrix algebra may however omit the section aad proceed directly to
Section 4.4.

FORMAL PROPERTIES OF THE TRANSFORMATION MATRIX

Let us consider what happens when two successive transtormations are made—
corresponding to two successive displacements of the rigid body. Let the first
transformation from r to r’ be denoted by B:

xp = by x,, (4 20)
and the succeeding transformation from ¥ 10 a third coordinate set r” by A:
x = ey (421

The relation between x," and x; can then be obtained by combining the two Egs.
(4.20) and (4.21):

x,' = anbiyx;.
This may also be written as
x" =%, (422)
where
¢y = aiby,. (4.23)

The successive application of two orthogonal transformations A, B 1s thus
equivalent to a third lirear transformation C. It can be shown that C is alsc an
orthogonal transformation in consequence of the orthogonality of A and B. The
detailed proof will be left for the exercises. Symbolically, the resultant operator C
can be considered as the product of the two operators A and B:

C =AB,

and the matrix elements ¢,; are by definition the elements of the square matrix
obtained by multiplying the two square matrices A and B.
Note that this “matrix” or operator multiplication is not commutative,

BA £ AB,
for. by definition, the elements of the transformation D = BA are

di; = biay,, (4.24)
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which generally do not agtee with the matrix elements of C, Eq. (4.23). Thus, the
final coordinate system depends upon the order of application of the operators A
and B, i.c., whether first A then B, or first B and then A. However, matrix mul-
tiplication is associative; in a product of three or more matrices the order of the
multiplications is unimportant:

(AB)C = A(BC). (4.25)

In Eq. (4.19) the juxtaposition of A and r, to indicate the operation of A on
the coordinate system (or on the vector), was said to be merely symbolic. But, by
extending our concept of matrices, it may alsv be taken as indicating an actual
matrix multiplication. Thus far, the matrices used have been square, i.e., with
equal number of rows and columns. However, we may alsc have one-column
matrices, such as x and x’ defined by

x) X
x=1|x |, X =|x5 |. (4.26)
X3 X3

The product Ax, by definition, shall be taken as a one-column matrix, with the
elements

Hence, Eq. (4.19) can alsc be written as the matrix equation
x' = Ax.

The addition of two matrices, while not as important a concept as multiplica-
tion, is a frequently used operation. The sum A 4 B 1s a matrix C whose elements
are the sum of the corresponding elements of A and B:

cl] =a,j +b1j.

Of greater importance is the transformation inverse to A. the operation that
changes 7’ back to 7. This wansfonmation will be called A~! and its matrix cle-
ments designated by @, J We then have the set of equations

xn=a Jx;, 4.27)
which must be consistent with
x,’c = qy, X,. (4.28)

Substituting x, from (4.27), Eq. (4.28) becomes

X, = ak,a;jx',-. 4.29)
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Since the components of 1’ are independent, Eq. (4.29) is correct only if the sum-
mation reduces identically to x;. The coefficient of x} must therefore be 1 for
J =k and O for j # k; in symbols,

ana, ;=0 (4.30)

The left-hand side of Eq. (4.30) is easily recognized as the matrix element for the
product AA™!, while the right-hand side is the element of the matrix known as
the unit matrix 1:

1 00
1=101 0. (431
0 0 1

Equation (4.30) can therefore be written as
AAT =1, (4.32)

which indicates the reason for the designation of the inverse matrix by A~!. The
transformation corresponding to T is known as the identity transformation, pro-
ducing no change in the coordinate system:

X =1x
Similarly multiplying any matrix A by 1, in any order, Jeaves A unaffected:
TA=A1=A.
By slightly changing the order of the proof of Eq. (4.28), it can be shown that A
and A~! commute. Instead of substituting x, in Eq. (4.29) in terms of x’, we could

equally as well demand consistency by eliminating x’ from the two equations,
leading in analogous fashion to

Tn matrix notation, this reads
AlA=1, (4.33)

which proves the statement.
Now let us consider the double sum

’
ARl Qs By
which can be written either as

/ N
cna, with ¢, = aprap,
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or as
Gl Aij with d; = ak,a,’].

Applying the orthogonality conditions, Eg. (4.15), the sum in the first form re-
duces to

ro__
81,au =aj,.

On the other hand, the same sum from the second point of view, and with the help
of kq. i4.30), can be written

Apidr; = ay].
Thus, the elements of the direct matrix A and the reciprocal A~1 are related by
aj, = ai. (4.34)

In general, the matrix obtained from A by interchanging rows and columns is
known as the transposed matrix, indicated by the tilde thus A. Equation (4.34)
therefore states that for orthogonal matrices the reciprocal matrix is to be identi-
fied as the transposed matrix; symbolically.

A~ =A (4.35)
If this result is substituted in Eq. (4.33), we obtain
AA =1, (4.36)

which 1s identical with the set of orthogonality conditions, Eq. (4.15), written in
abbreviated form, as can be verified by direct expansion. Similarly, an alternative
form of the orthogonality conditions can be obtained from Eq. (4.30) by substi-
tuting (4.34):

aga; =8,. .37

In symbolic form, (4.37) can be written

AA =1

and may be derived directly from (4.36) by multiplying it from the left by A and
from the right by A~'.

A rectangular matrix 1s said to be of dimension m x n if it has m rows and n
columns; i.e., if the matrix element is g;;, then i runs from 1 to m, and j from 1
to n. Clearly the transpose of such a matrix has the dimension n x m. If a vector
column matrix is considered as a rectangular matrix of dimension m x 1, the
transpose of a vector is of dimension 1 x m, i.e., a one-row matrix. The product
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AB of two rectangular matrices exists only if the number of columns of A is the
same as the number of rows of B. This is an obvious consequence of the definition
of the multiplication operation leading to 4 matrix element'

C,j = a;kbkj .

From this viewpoint, the product of a vector column matrix with a square matrix
does not exist. The only product between these quantities that can be formed is
that of a square matrix with a single column matrix. But note that a single row
matrix, i.e., a vector transpose, can indeed pre-multiply « square matrix. For a
vectur, however, the distinction between the column matnix and 1its transpose is
often of no consequence. The symbol x may therefore be used to denote either
a column or a row matrix, as the sitnation warrants.* Thus in the expression Ax,
where A is a square mztrix, the symbol x stands for a column matrix, whereas in
the expression XA it represents the same elements arranged in a single row. Note
that the ith component of AX can be written as

Agx, =rJ(A)J,-.

Hence, we have a useful commutation property of the product of a vector and a
square matrix that

Ax = XA.
A square matrix that is the same as its transpose,
Ay =Aj, (438)

is said (for obvious reasons) to be symmetric. When the transpose is the negative
of the original matrix,

Ay =—-4Ap, (4.39)

the matrix is antisymmetric or skew symmetric. Clearly in an antisymmetric ma-
trix, the diagonal elements are always zero.

The two interpretations of an operator as transforming the vector, or altema-
tively the coordinate system, are both involved if we find the transformation of an
operator under a change of coordinates. Let A be considered an operator acting
upon a vector F (or a single-column matrix F) to produce a vector G:

G =AF.

If the coumdinale system is transformed by a matrix B, the components ot the
vector G in the new sysiem will be given by

BG = BAF,

*The (ranspose sign on vector matrices will occastonally be retamed where 1t 15 useful to emphasize
the diwstinction between column and row matrices
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which can also be written
BG = BAB™'BF. (4.40)

Equation (4.40) can be stated as the operator BAB™! acting upon the vector F,
expressed in the new system, produces the vector G, likewise expressed in the
new coordinates. We may therefote consider BAB™! to be the form taken by the
operator A when transformed to a new set of axes:

A’ = BAB™!, (4.41)

Any transformation of a matrix having the form of Eq. (4.41) is known as a simi-
larity transformation.

It is appropriate at this point to consider the properties of the determinant
formed from the elements of a square matrix. As is customary, we shall denote
such a determinant by vertical bars, thus: |A]. Note that the definition of matrix
muluplication 1s identical with that for the multiplication of determinants

|AB| = |A| - {B|. (4.41")

Since the determinant of the unit matrix 15 1, the determinantal form of the or-
thogonality conditions, Eq. (4.36), can be written

IA| - A} = 1.

Further, &s the valuc of a determinant is unaffected by interchanging rows and
columns, we can write

AIZ =1, (1.42)

which implies that the determinant of an orthcgonal matrix can only be +1 or —1.
(The geometrical significance of these two vatues will be considered in the next
section.)

When the matrix is not orthogonal, the determinant does not have these simple
values, of course. It can be shown however that the value of the determinant is
invariant under a similarity transformation. Multiplying Eq. (4.41) for the trans-
formed matrix from the right by B. we obtain the relation

A'B = BA,
or in determinantal form
|A’] - |B| = |B] « A].
Since the determinant of B 1s merely a number, and not zero,* we can divide by

*If 1t were zero. there could be no mverse operator B~! (by Cramer's rule), »hich 1s required for
Eq. (4 41) to make sense.
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|B| on both sides to obtain the desired result:
A’ = JAl

In discussing rigid body motion later. all these properties of matrix transfor-
mations, especially of orthogonal matrices, will be employed. In addition, cther
properties are needed, and they will be derived as the occasion requires.

THE EULER ANGLES

We have noted (cf. p. 137) that the nine elements ¢,; are not suitable as generalized
coordinates because thsy are not independent quantities. The six relations that
express the orthogonality conditions, Egs. (4.9) or Egs. (4 15), of course reduce
the number of independent elements to three. But in order to characterize the
motion of a rigid body, there i< an additional requirement the matrix elements
must satisfy, beyond those implied by orthogonality. In the previous section we
pointed out that the determinant of a real orthogonal matrix could have the value
+1 or —1. The following argument shows however that an orthogonal matrix
whose determinant is —1 cannot representa physical displacement of a rigid body.
Cansider the simplest 3 x 3 matrix with the determinant —1:

-1 0 0
S= 0 -1 0]=-1.
0 0 -1

The transformation § has the effect of changing the sign of each of the components
or coordinate axes (cf. Fig. 4.6). Such an operation transforms a right-handed
coordinate system into a left-handed one and is known as an inversion of the
coordinate axes.

One method of performing an inversion is to rotate about a coordinate axis by
180° and then reflect in that coordinate axis direction. For the z-direction, this
gives

rotate reflect
by 180° inthe | = inversion.
about z / \ xy plane

FIGURE 4.6 Inversion of the coordinate axss.
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In matrix notation, this has the form

-1 00 1 0 0 -1 0 0
0 -1 0[]0 1 O0]= 0 -1 0},
0 01 0 0 -1 0 0

where the 180° rotation is obtained by setting ¢ = 180° in Eq. (4.17).

From the nature of this operation, it is clear that an inversion of a right-handed
system into a left-handed one cannot be accomplished by any rigid change in the
orientation of the coordinate axes An inversion therefore never corresponds to a
physical displacement of a rigid body. What is true for the inversion S is equally
valid for any matrix whose determinant is —1, for any such matrix can be writ-
ten as the product of S with a matrix whose determinant is +1, and thus includes
the inversion operation. Consequently, it cannot describe a rigid change in on-
entation Therefore, the transformations representing rigid body motion must be
restricted to matrices having the determinant 1. Another method of reaching this
conclusion starts from the fact that the matrix of transformation must evolve con-
tinuously from the unit matrix, which of course has the determinant +1. It would
be incompatible with the continuity of the motion to have the matrix determinant
suddenly change from its initial value 41 to —1 at some given time. Orthogonal
transformations with determinant 41 are said to be proper, and those with the
determinant —1 are called improper.

In order to describe the motion of rigid bodies in the Lagrangian formulation
of mechanics, it will therefore be necessary to seek three independent parameters
that specify the orientation of a rigid body in such a manner that the correspond-
ing orthogonal matrix of transformation has the determinant -+1. Only when such
generalized coordinates have been found can we write a Lagrangian for the sys-
tem and obtain thc Lagraagian cquations of motion. A number of such sets of
parameters have been described in the literature, but the most common and useful
are the Euler or Eulerian angles. We shall therefore define these angles at this
point, and show how the elements of the orthogonal transformation matrix can be
expressed in terms of them.

We can carry out the transformation from a given Cartesian coordinate sys-
tem to anothe: by means of (hree successive rotations performed in a specific
sequence. The Euler angles are then defined as the three successive angles of rota-
tion. Within limits, the chaice of rotation angles is arbitrary. The main convention
that will be followed here is used widely in celestial mechanics, applied mechan-
ics, and frequently in molecular and solid-state physics. Other conventions will
be described below and in Appendix A.

The sequence employed here is started by rotating the initial system of axes,
xyz, by an angle ¢ counterclockwise about the z axis, and the resultant coordinate
system is labeled the £r¢ axes. In the second stage, the intermediate axes, £nt,
are rotated about the & axis counterclockwise by an angle 8 to produce another in-
termediate set, the &'z’ axes. The £/ axis is at the intersection of the xy and &'/
planes and is known as the line of nodes. Finally, the £'5/¢’ axes are rotated coun-
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FIGURE 4.7 The rotations defining the Eulerian angles.

terclockwise by an angle ¥ about the ¢/ axis 1o produce the desired x’y’z’ system
of axes. Figure 4.7 illustrates the various stages of the sequence. The Euler angles
6, ¢, and ¥ thus completely specify the orientation of the x’y'z’ system relative
to the xyz and can therefore act as the three needed generalized coordinates. ¥

The elements of the complete transformation A can be obtained by writing the
matrix as the triple product of the separate rotations, each of which has a relatively
simple matrix form. Thus, the initial rotation about z can be described by a matrix
D:

& =Dx,

where £ and x stand for column matrices. Similarly, the transformation from &é7¢
to §'n't’ can be described by a matrix C,

*A number of nunor variatzons will be found in the hteraturc even within this convention The differ-
ences are not very great, but they arc often sufficient to frustrate easy comparison of the cnd tormulae,
such as the matnix elements. Greatest confusion, perhaps, arises from the occasional use of left-handed
coordinate systems



4.4 The Euler Angles 153

§=C¢
and the last rotation to x'y 'z’ by a matrix B,
x' = BE&'.
Hence, the matrix of the complete transformation,
x' = Ax,
is the product of the successive matrices,
A = BCD.

Now the D transformation is a rotation about z, and hence has a matrix of the
form (cf. Eq. (4.17))

" cos¢p sing 0
D= | —sing cos¢p O |. (4.43
0 0 1

The C transformation corresponds to a rotation about &, with the matrix

1 0 0
C=|0 cos@ siné |, (4.44)
| 0 —sind cosd

and finally B is a rotation about ¢’ and therefore has the same form as D:

cosy sinyr 0
B=| —siny cosy O0]. (4.45)
0 0 1

The product matrix A = BCD then follows as

—sinycosd —cosOsmgeosy —sinysng +cosfcosgcosy  cosyrsind

COS ¢ COS¢p — cos @ sin¢ s ¥ cosysimg +cosBcosgsinyg sy sing
A= .

sinfsing —sindcos¢ cos@
(4.46)
The inverse transformation from body coordinates to space axes
x=A"x
is then given immediately by the transposed matrix A:
ATl =
. cosycosg —cosfsmngsny —smyycosgd —cosfsimgdcosy s sin ¢
A= | cosysing +cosfcosgpsing —sinysang +cosfcospcosy —smbcasg |.
sinf siny sinf cos ¥ cos &

(4.47)
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Verification of the multiplication, and demonstration that A represents a proper,
orthogonal matrix will be left to the exercises.

Note that the sequence of rotations used to define the final orientation of the
coordinate system is to some extent arbitrary. The initial rotation could be taken
about any of the three Cartesian axes. In the subsequent two rotations, the only
limitation is that no two successive rotations can be about the same axis. A total
of 12 conventions is therefore possible in defining the Euler angles (in a right-
handed coordinate system). The two most frequently used conventions differ only
in the choice of axis for the second rotation. In the Euler’s angle definitions de-
scribed above, and used throughout the book, the second rotation is about the
intermediate x axis. We will refer to this choice as the x-convention. In quan-
tum mechanices, nuclear physics, and particle physics, we often take the second
defining rotation about the intermediate y axis; this form will be denoted as the
y-convention.

A third convention is commonly used in engineering applications relating to
the orientation of moving vehicles such as aireraft and satellites Both the x- and
y-conventions have the drawback that when the primed coordinate system is only
slightly different from the unprimed system, the angles ¢ and ¥ become indistin-
guishable, as their respective axes of rotation, z and z’ are then nearly coincident.
To get around this problem, all three rotations are taken around different axes.
The first rotation is about the vertical axis and gives the heading or yaw angle.
The second is around a perpendicular axis fixed in the vehicle and normal to the
figure axis; it is measured by the pitch or attitude angle. Finally, the third angle
is one of rotation about the figure axis of the vehicle and is the roll or bank an-
gle. Because all three axes are involved in the rotations, it will be designated as
the xyz-convention (although the order of axes chosen may actually be different).
This last convention is sometimes referred to as the 7aiz—Bryan angles.

While only the x-convention will be used in the text, for reference purposes
Appendix A lists formulae involving Euler’s angles, such as rotation matrices, in
both the y- and xyz-conventions.

THE CAYLEY-KLEIN PARAMETERS AND RELATED QUANTITIES

We have seen that only three independent quantities are needed to specify the ori-
entation of a rigid body. Nonetheless, there are occasions when it is desirable 1o
use sets of variables containing more than the minimum number of quantities to
describe a rotation, even though they are not suitable as generalized coordinates.
Thus, Felix Klein introduced the set of four parameters bearing his name to fa-
cilitate the integration of complicated gyroscopic problems The Euler angles are
difficult to use in numerical computation because of the large number of trigono-
metric functions involved, and the four-parameter representations are much better
adapted for use on computers. Further, the four-parameter sets are of great the-
oretical interest in branches of physics beyond the scope of this book, wherever
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rotations or rotational symmetry are involved. It therefore seems worthwhile to
briefly describe these parameters, leaving the details to Appendix A.

The four Cayley—Klein parameters are complex numbers denoted by «, 8, ¥,
and 3 with the constraints that § = y* and § = «*. In terms of these numbers,
the transformation matrix of a rotated body is given by

1 .

S@ -y 48— (PPt - ys—op

i 1

7@ +y -8 S@+y 48 Bty
ps —ay iy + B6) ad + By

The matrix A is real in spite of its appearance, as we can see by writing

a=¢+ies

B=e+ie,

where the four real quantities ep, e), £2, and e3 are often referred to as the Cayley—
Klein parameters but should be called the Euler parameters to be correct. They
satisfy the relation

g+el+ed+el=1.

A hit of algebraic manipulation then shows that the matrix A can be written in
terms of the four real parameters in the form

6[2) + e% — e% - e% 2(e1e2 + epey) 2(e1e3 — epen)
A= 2(e1e2 — eyes) eg — e'l2 + eg — e% 2(ezes + epey) . (447)
2(eje3 + egez) 2(eze3 — eper) e% - e% — e% + e§

The reality of the matrix elements is now manifest. It can also be easily demon-
strated that the matrix A in terms of these parameters cannot be put in the form of
the inversion transformation S. An examination of the off-diagonal elements and
their transposes shows that they all vanish only 1f at least three ot the parameters
are zero. We cannot then choose the remaining nonzero parameter such that all
three of the diagonal elements (or only one of them) are —1.

EULER’S THEOREM ON THE MOTION OF A RIGID BODY

The discussions of the previous sections provide a complete mathematical tech-
nique for describing the raotions of a rigid body. At any instant, the orientation of
the body can be specified by an orthogonal transformation, the elements of which
may be expressed in terms of some suitable set of parameters. As time progresses,
the orientation will change, and hence the matrix of transtormaticn will be a func-
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tion of time and may be written A(z). If the body axes are chosen coincident with
the space axes at the ttime ¢ = 0, then the transformation is initially simply the
identity transformation:

AD)=1.

At any later time, A(¢) will in general differ from the identity transformation, but
since the physical motion must be continuous, A(¢) must be a continuous function
of time. The transformation may thus be said to evolve continuously from the
identity transformation.

With this method of describing the motion, and using only the mathematical
apparatus already introduced, we are now in a position to obtain the important
charzcteristics of rigid body motion. Of basic importance is:

Euler’s Theorem: The general displacement of a rigid body with one
point fixed is a rotation about some axis.

The theorem means that for every such rotation it is always possible to find an
axis through the fixed point oriented at particular polar angles  and ¢ such that
a rotation by the particular angle ¢ about this axis duplicates the general rota-
tion. Thus, three parameters (angles) characterize the general rotation. It is also
possible to find three Euler angles to produce the same rotztion.

If the fixed point (not necessarily at the center ot mass ot the object) 1s taken
as the origin of the body set of axes, then the displacement of the rigid body
involves no translation of the body axes; the only change is in orientation. The
theorem then states that the body set of axes at any time 7 can always be obtained
by a single rotation of the initial set of axes (taken as coincident with the space
set). In other words, the operation implied in the matrix A describing the physical
motion of the rigid body is a roration. Now it is characteristic of a rotation that one
direction, namely, the axis of rotation, is left unaffected by the operation. Thus.
any vector lying along the axis of rotation must have the same components in both
the initial and final axes.

‘The other necessary condition for a rotation, that the magnitude of the vectors
be unaffected, is automatically provided by the orthogonality conditions. Hence.
Euler’s theorem will be proven if it can be shown that there exists a vector R hav-
g the same components in both systems. Using matrix notation for the vector,

R =AR=R. (4.48)
Equation (4.48) constitutes a special case of the more general equation:
R = AR= AR, (4.49)

where A is some constant, which may be complex. The values of A for which
Eq. (4.49) is soluble are known as the characteristic values, or eigenvalues* of

*This term 15 denved from the German Ergenwerte literally “proper values”
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the matrix. Since equations of the form of (4.49) are of general interest and will be
used in Chapter 6, we shall examine Eq. (4.49) and then specialize the discussion
to Eq. (448).

The pioblem of finding vectors that satisfy Eq. (4.49) is therefore called the
eigenvalue problem for the given matrix, and Eq. (4.49) itself is referred to as the
eigenvalue equation. Correspondingly, the vector solutions are the eigenvectors
of A. Euler’s theorem can now be restated in the following language:

The real orthogonal matrix specifying the physical motion of a rigid
body with one point fixed always has the eigenvalue +1.

The eigenvalue equatiors (4.49) may be written
(A—-A1NR=0, (4.50)
or, in expanded form,
(au — )X +ap¥ -a3Z=0
anX + (@ =AY —anZ =0 (4.51)
asiX +anY + (a3 —A)Z=0.

Equations (4.51) comprise a set of three homogeneous simultaneous equations for
the components X, Y, Z of the eigenvector R. As such, they can never furnish def-
inite values for the three components, but only ratios of components. Physically,
this corresponds to the circumstance that only the direction of the eigenvector can
be fixed; the magnitude remains undetermined. The product of a constant with an
eigenvector is also an eigenvector. In any case, being homogeneous, Egs. (4.51)
can have a nontrivial solution only when the determinant of the coefficients van-
ishes.

an — A ap az
[A—All=]| ay azp — i as | =0 (4.52)
asg as; asz — i

Equation (4.52) is known as the characteristic or secular equarion of the matrix,
and the values of A for which the equation is satisfied are the desired eigenvalues.
Euler’s theorem reduces te the statement that, for the real orthogonal matrices
under consideration, the secular equation must have the root A = 1.

In general, the secular equation will have three roots with three corresponding
eigenvectors. For convenience, the notation X, X2, X3 will often be used instead
of X, Y. Z. In such a notation, the components of the eigenvectors might be
labeled as Xk, the first subscript indicating the particular component, the second
denoting which of the three eigenvectors in involved. A typical member of the
group of Eqgs. (4.51) would then be written (with explicit summation) as

Zauxjk = 24 X1k
7
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or, alternatively. as

Za,,X,k = quaﬂckk- 4.53)
J i

Both sides of Eq. (4.53) then have the form of a matrix product element; the left
side as the product of A with a matrix X having the elements X ;, the right side
as the product of X with a matrix whose jkth element is 8,;A. The last matrix is
diagonal, and its diagonal elements are the eigenvalues of A. We shall therefore
designate the matrix by A:

MM 0 O
A=]0 x 0. (4.54)
0 0 i3

Equation (4.53) thus implies the matrix equation
AX = XA,
or, multiplying from the left by X~1,
X~1AX = A. (4.55)

Now, the left side is in the form of a similarity transformation operating on A. (We
have only to denote X~ by the symbol Y to reduce it to the form Eq. (4.41).) Thus,
Eq. (4.55) provides the following alternative approach to the eigenvalue problem:
We seek to diagonalize A by a similarity transformation. Each column of the ma-
trix used to carry out the similarity transformation consists of the components of
an eigenvector. The elements of the diagonaliced form of A ate the corresponding
eigenvalues.

_ Euler’s theorem can be proven directly by using the orthogonality property of
A. Consider the expression

A—1DA=1-—A.

If we take the determinant of the matrices forming both sides (cf. Eq. (4.41')), we
can write the equality

IA—1]JA] = |1 = A (4.56)

To describe the motion of a rigid body, the matrix A(?) must correspond to a
proper rotation; therefore the determinant of A, and of its transpose, must be +1.
Further, since in general the determinant of the transpose of a matrix is the same
as that of the matrix, the transpose signs in Eq. (4.56) can be removed:

IA—1]=|1—-A| (4.57)
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Equation (4.57) says that the determinant of a particular matrix is the same as the
determinant of the negative of the matrix. Suppose B is some 7 X n matrix. Then
it is a well-known property of determinants that

[ - Bl = (-1)"IBI.

Since we are working in a three-dimensional space (n = 3), it is clear that
Eq. (4.57) can hold for any arbitrary proper rotation only if

IA—1]=0. (4.58)

Comparing Eq. (4.58) with the secular equation (4.52), we can see that one of the
eigenvalues satisfying Eq. (4.52) must always be A = +1, which is the desired
result of Euler’s theorem.

Note how the proof of Euler’s theorem emphasizes the importance of the num-
ber of dimensions in the space considered. In spaces with an even number of
dimensions, Eq. (4.57) is an identity for all matrices and Euler’s theorem doesn’t
hold. Thus, for two dimensions there is no vector in the space that is left unaltered
by a rotation—the axis of rotation is perpendicular to the plane and therefore out
of the space.

It is now a simple matter to determine the properties of the other eigenvalues
in three dimensions. Designate the +1 eigenvalue as A3. The determinant of any
matrix is unaffected by a similarity transformation (cf. Section 4.3). Hence, by
Eqgs. (4.54) and (4.55) and the properties of A as a proper rotaticn,

Al = AtAzds = LAz = 1. (4.59)

Further, since A is a real matrix, then if A 15 a solution of the secular equa-
tion (4.52), the complex conmugate 1* must also be a solution.

If a given eigenvalue A, is complex, then the corresponding eigenvector, R;,
that satisfies Eq. (4.59) will in general also be complex. We have not previously
dealt with the properties of complex vectors under (real) orthogonal transforma-
tions, and theie are some modifications to previous definitions. The square of the
length or magnitude of a complex vector R is R « R*, or in matrix notation RR*,
where the transpose sign on the left-hand vector indicates it is vepresented by a
row matrix Under a real orthogonal transformation, the square of the magnitude
is invariant

R'R* = (AR)AR* = RAAR* = RR*.

Suppose now that R is a complex eigenvector corresponding to a complex eigen-
value A. Hence, by Eq. (4.49), we have

ﬁ/R!* — At ﬁR* ,
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which leads to the conclusion that all eigenvalues have unit magnitude:
A =1. («.60)

From these propertics it may be concluded that there are three possible distri-
butions of eigenvalues. If all of the eigenvalues are real, then only two situations
are possible:

1. All eigenvalues are +1. The transformation matrix is then just 1, a case we
may justly call trivial.

2. One eigenvalue 15 +1 and the other two are both —1. Such a transformation
may be characterized as an inversion in two coordinate axes with the third
unchanged. Equally it is a rotation through the angle 77 about the direction
of the unchanged axis.

I not all of the eigenvalues are real, there is only one additional possibility:

3. One eigenvalue :s +1, and the other two are complex conjugates of each
other of the form ¢'® and ',

A more complete statermnent of Euler’s theorem thus is that any nontrivial real
orthegonal matrix has one, and only one, eigenvalue +1.

The direction cosines of the axis of rotation can then be obtained by seiting
A = 1 m the eigenvalue equations (4.51) and solving for X, ¥, and Z.* The
angle of rotation can likewise be obtained without difficulty. By means of some
similarity transformation, it is always possible to transform the matrix A to a
system of coordinates where the z axis lies along the axis of rotation. In such a
system of coordinates, A’ represents a rotation about the z axis through an angle
&, and therefore has the form

cosd® sind O
A=| —sin® cosd 0
0 0 1

The trace of A’ is simply
14 2cos @.

Since the trace is always invariant under a similarity transformation, the trace of
A with respect to any initial coordinate system must have the same form,

TrA=aqa, =1+2cos P, “.61)

*1f there are multiple toots to the secular equation, then the corresponding eigenvectors cannot be
found as sumply (ct Sections 5 4 and 6.2) Indeed, 1t 15 not always possible to completely diagonalize
a general matrix 1f the eigenvalues are not all disunct These exceptions are of no mmportance for the
present considerations. as Euler’s theorem shows that for all nontrivial orthogonal matrices +1 is a
single root
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which gives the value of @ in terms of the matrix elements. The rotation angle @
is to be 1dentified also with the phase angle of the complex eigenvalues A, as the
sum of the eigenvalues is just the trace of A in its diagonal form, Eq. (4.54). By
Euler’s theorem and the properties of the eigenvalues, this sum is

TrA=Zk, =1+4+6% 47 =14 2cos .
1

We see that the situations in which the eigenvalues are all real are actually special
cases of A having complex eigenvalues. All the A, = +1 corresponds to a rotation
angle ¢ = 0 (the identity transformation), while the case with a double eigenvalue
—1 comesponds to ® = 7, as previously noted.

The prescriptions for the direction of the rotation axis and for the rotation angle
are not unambiguous. Clearly if R is an eigenvector, so is —R; hence the sense of
the direction of the rotation axis is not specified. Further, —® satisfies Eq. (4.61)
if & does. Indeed, it is clear that the eigenvalue solution does not uniquely fix
the orthogonal transtormation matrix A. From the determinantal secular equa-
tion (4.52), it follows that the inverse matrix A—! = A has the same eigenvalues
and ergenvectors as A. However, the ambiguities can at least be ameliorated by
assigning @ to A and —¢ to A~ !, and fixing the sense of the axes of rotation by
the right-hand screw rule.

Finally, note should be made of an immediate corollary of Euler’s theorem,
sometimes called

Chasles’ Theorem: The most general displacement of a rigid body is
a transiation plus a rotation.

Detailed proof is hardly necessary. Simply stated, removing the constraint of mo-
tion with one point fixed introduces three translatory degrees of freedom for the
origin of the body system of axes.*

FINITE ROTATIONS

The relative orientation of two Cartesian coordinate systems with common ori-
gin has been described by various representations, including the three successive
Euler angles of rotation that transform one coordinate system to the other. In the
previous section it was shown that the coordinate transformation can be carried
through by a single rotation about a suitable direction. It is therefore natural to
seek a representation of the coordinate transformation in terms of the parame-

M Chasles (1793—1881) also proved a stronger form of the theorem, namely, that it is possible to
choose the origin of the body set of coordinates so that the translation is in the same direction as the
axis of retation. Such a combination ot translation and rotation 1s called a screw motion

This formalism has some use 1n crystallographic studies of crystals with a screw axis of symmetry.
Such symnctry produces swrange oplical properties. Aside from that application, there seems to be
little present usc for this version of Chasles’ theorem, nor for the elaborate mathematics of screw
motions developed in the nineteenth century.
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ters of the rotation—the angle of rotation and the direction cosines of the axis of
rotation.

With the help of some simple vector algebra, we can derive such a represen-
tation For this purpose, it is convenient to treat the transformation in its active
sense, i.e., as one that rotates the vector in a fixed coordinate system (cf. Sec-
tion 4.2 ). Recall that a counterclockwise rotation of the coordinate system then
appears as a clockwise rotation of the vector. In Fig. 4.8(a) the initial position of
the vector r is denoted by OP and the final position 1’ by Ué, while the unit
vector along the axis of rotation is denoted by n. The distance between O and N
has thc magnitudc n - r, so that thc vector Wv can bc written as n(n - r). Fig-
ure 4.8(b) sketches the vectors in the plane normal to the axis of rotation. The
vector NP can be described also as r — n(n - r), but its magnitude is the same as
that of the vectors @ and r x n. To obtain the desired relation between r’ and r,
we construct ¥ as the sum of three vectors:

Y =ON+NV+VQ
or
r=n@m-r)+[r—nn-nlcos® + (r x n)sin .
A slight rearrangement of terms leads to the final result:
¥ =rcos®+nm-r)l —cosP) + (r x n) sin P. (4.62)

Equation (4.62) will be referred to as the roration formula. Note that Eq. (4.62)
holds for any rotation, no matter what its magnitude, and thus is a finite-rotation
version (in a clockwise sense) of the description given in Section 2.6, for the
change of a vector under infinitesimal rotation (cf aleo Section4 8 )

o

(b) The plane normal to
(a) Overall view the axis of rotation

FIGURE 4.8 Vector diagrams for denvation of the rotation formula.
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It is straightforward to express the rotation angle, ®, in terms of the Euler an-
gles. Equation (4.61) gives the trace of the rotation matrix in the plane perpendic-
ular to the axis of rotation. Since the trace of a matrix is invariant, this expression
must equal the trace of A as givenin Eq (4.46) If we use this equality, add one (1)
to both sides, and use trigonometric identities, we get an equation whose square
root is
¢ty 6

5 CO8 '-2-,

¢
cos ) = cos (4.63)
wheie the sign of the square 1oul is (ised by ihe physical requireinent that & — 0
as¢.¥,and 0 — O.

INFINITESIMAL ROTATIONS

In the previous sections various matrices have been associated with the descrip-
tion of the rigid body orientation. However, the number of matrix elements has
always been larger than the number of independent variables, and various sub-
sidiary conditions have had to be tagged on. Now that we have established that
any given orientation can be obtained by a single rotation about some axis, it is
tempting to try to associate a vector, characterized by three independent quanti-
ties, with the finite displacement ot a rigid body about a fixed point. Certainly a
direction suggests itself obviously—that of the axis of rotation—and any function
of the rotation angle would seem suitable as the magnitude. But it soon becomes
evident that such a correspondence cannot be made successfully. Suppose A and
B are two such “vectors” associated with transformations A and B. Then to qualify
as vectors they must be commutative in addition:

A+B=B+A.

But the addition of two rotations, i.e., one rotation performed after another, it has
been seen, corresponds to the product AB of the two matrices. However, matrix
multiplication is not commutative, AB % BA, and hence A, B are not commuta-
tive in addition and cannot be accepted as vectors. This conclusion, that the sum
of finite rotations depends upon the order of the rotations, is strikingly demon-
strated by a simple experiment. Thus, Fig. 4.9 illustrates the sequence of events
in rotating a block first through 90° about the 7" axis fixed in the block, and then
90° about the y’ axis, while Fig. 4.10 presents the same rotations in reverse order.
The final position is markedly different in the two sequences.

While a finite rotation thus cannot be represented by a single vector, the same
objections do not hold if only infinitesimal rotations are considered. An infinites-
imal rotation is an orthogonal transformation of coordinate axes in which the
components of a vector are almost the same in both sets of axes—the change
is infinitesimal. Thus, the x; component of some vector r (on the passive interpre-
tation of the transformation) would be practically the same as xj, the difference
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zl

e

(a) Vertcal positior (b) Rotated 90° about z’ (c) Rotated 90° ablout
mtermediate y

FIGURE 4.9 The effect of two rotations performed in a given order.

/ o 4/ Ly / ¥

1l

(a) Vertical posiion (b) Rotated 90° about y* (¢) Rotated 90° about
intermedsate z’

FIGURE 4.10 The two rotations shown in Fig. 4.9, but performed in reverse order.

being extremely small;
x; = Xx] + €11x1 + €12x2 + €13x3. (4.64)

The matrix elements €], €12, etc., are to be considered as infinitesimals, so that in
subsequent calculations only the first nonvanishing order in ¢,; need be retained.
For any general component x,, the equations of infinitcsimal transformation can
be written as

X =X +€yx;
or

The quantity &,, will be recognized as the element of the unit matrix, and
Eq. (4.65) appears in matrix notation as

X =(1+ex (4.66)
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Equation (4.66) states that the typical form for the matrix of an infinitesimal trans-
formation is 1 + €; i.e., it is almost the identity transformation, differing at most
by an infinitesimal operator.

It can now be seen that the sequence of operations is unimportant for infinites-
imal transformations; in other words, they commute. If 1 + €; and 1 + e; are two
infinitesimal transformations, then one of the possible products is

(1+e)(1+e)= Piel+la+eae
=1+¢€ + €, 4.67)

neglecting higher-order infinitesimals. The product in reverse order merely inter-
changes €; and e>; this has no effect on the result, as matrix addition is always
commutative. The commutative property of infinitesimal transformations over-
comes the objection to their representation by vectors. For example, the rotation
matrix (4.40) for infinitesimal Euler rotation angles is given by

1 @dp+dy) 0
A= | —(d¢ +dy¥) 1 dé
0 —de 1

and
dQ=1id6 + k(d¢ + dv¥),

where iand k are the unit vectors in the x- and z-directions, respectively.
The nverse matrix for an infinitesimal ransformation is readily obtained. It
A = 1 + € is the matrix of the transformation, then the inverse is

Al=1-e (4.68)
As proof, note that the product AA~! reduces to the unit matrix,
AA ' =1 +e(1-€) =1,

in agreement with the deﬁnition~for the inverse matrix, Eq (4 32) Further, the
orthogonality of A implies that A = (1 + &) must be equal to A~ as given by
Eq. (4.68). Hence, the infinitesimal matrix is antisymmetric* (cf. Eq. (4.39)):

€ = —€,

Since the diagonal elements of an antisymmetric matrix are necessarily zero,
there can be only three distinct elements in any 3 x 3 antisymmetric matrix. Hence,

*In thus section we have assumed mmphicitly that an nfinitesimal orthogonal transformation corrs-
sponds to a rotation. In a sense this assumption 1s obvious; an “infinitesimal inversion™ 15 a contradic-
tion 1n terms. Formally, the statement follows from the antisymmetry of € All the diagonal clements
of 1 + € zre then unity, and to first order in small quantities, the determinant of the transformation is
always + . which 13 the mark of a proper rotation.
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there is no loss of generality in writing € in the form

0 dS?3  —dQ
€= | —dQs 0 AdQ (4.69)
dQ» —dQ 0

The three quantities dy, dQ,, d23 are clearly to be identified with the three
independent parameters specifying the rotation. We will now show that these three
quantities also form the components of a particular kind of vector. By Eq. (4.66)
the change in the components of a vector under the infinitesimal transformation
of the coordinate system can be expressed by the matrix equation

r —r=dr =er, (4.70)
which in expanded form, with € given by (4.69), becomes

dx) = x2d3 — x3dQp
dxs = x3dQ) — x1dS2% @70
dx3 =x1dQ2 — x2d 4.

The right-hand side of each of Egs. (4.71) is in the form of a component of the
cross product of two vectors, namely, the cross product of r with a vector d<2 hav-
ing components* dQ), dQ2, dS23. We can therefore write Eq. (4.71) equivalently
as

dr =r x df}. 4.72)

The vector r transforms under an orthogonal matrix B according to the relations
(cf. Eq. (4.20%)

x; = bjjx;. (4.73)

If d€) is to be a vector in the same sense as I, it must transform under B in the
same way. As we shall see, d{2 passes most of this test for a vector, although in
one respect it fails to make the grade. One way of examining the transformation
properties of d€} is to find how the matrix e transforms under a coordinate trans-
formation. As was shown in Section 4.3, the transformed matrix € is obtained by
a similarity transformation:

¢ =BeB~!.

*Tt cannot be emphasized too strongly that d€) 1s not the differential of a vector. The combination 7€)
stands for a differential vector, that 13, a vector of differential magnitude. Unfortunately, notational
convention results in having the vector characteristic applied only to €, but 1t should be clear to the
reader there is no vector of which d€) represents a differential. As we have seen, a finite rotation
cannot be represented by a single vector
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As the antisymmetry property of a matrix is preserved under an orthogonal simi-
larity transformation (see Derivation 3), € can also be put in the form of Eq. (4.69)
with nonvanishing elements d€2]. A detailed study of these elements shows that
€ transforms under the similarity transformation such that

The transformation of d{2 is thus almost the same as for r, but differs by the factor
|B, the determinant of the transformation matrix.

There is however a simpler way to uncover the vector characteristics of d{2,
and indeed to verity 1its transtormation properties as given by kq. (4.74). In the
previous section a vector formula was derived for the change in the components
of r under a finite rotation ® of the coordinate system. By letting & go to the
limit of an infinitesimal angle d ®, the corresponding formula for an infinitesimal
rotaticn can be obtained. In this limit, cos @ in Eq. (4.62) approaches unity, and
sin & goes to P; the resultant expression for the infinitesimal change in r is then

¥ —r=dr=rxndo. 475

Comparison with Eq. (4.72) indicates that 4£2 is indeed a vector and is determined
by

dQ =nd®. (4.76)

Equation (4.75) can of course be derived directly without recourse to the finite
rotation formula. Considered in its active sense, the infinitesimal coordinate trans-
formation corresponds to a rotation of a vector r clockwise through an angle d®
about the axis of rotation, a sitvation that is depicted in Fig. 4.11.* The magnitude
of dr, to first order in 4@ is, from the figure,

dr =rsinfd®,

and the direction dr is, in this limit, perpendicular to both r and d€) = nd®.
Finally, the sense of dr is in the direction a right-hand screw advances as r is
turned into d€}. Figure 4.11 thus shows that in magnitude. direction, and sense dr
is the same as that predicted by Eq. (4.75).

The transformation properties of 4£2, as defined by Eq. (4.76), are still to be
discussed. As is well known from elememary vector algebra, there are two kinds
of vectors in regard to transformation properties under an inversion. Vectors that
transform according to Eq. (4.72) are known as polar vectors. Under a three-
dimensional inversion,

-1 0 O
S= 0 -1 0O
0 0 -1

*Figure 4.11 15 the clockwise-rotation version of Fag. 2.8.
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nd® =dQ

-

/

FIGURE 4.11 Change in a vecior produced by an infinitesimal clockwise rotarion of the
vector.

whose components are
S'J = _6lJ sy

all components of a polar vector change sign.

On the other hand, the components of axial vectors or pseudovectors do not
change sign under inversion. The simplest example of an axial vector is a cross
product of two polar vectors,

V*=DxF,

where the components of the cross product are given, as customary, by the defini-
tions:

V} — D, Iy — I'; Dg. i, j, k in cyclic order. .77

The components of D and F change sign under inversion; hence those of C do not.
Many familiar physical quantities are axial vectors, such as the angular momen-
tum L = r x p, and the magnetic field intensity. The transformation law for an
axial vector is of the form of Eq. (4.74). For proper orthogonal transformations,
axial and polar vectors are indistinguishable, but for improper transformations,
i.€., involving inversion, the determinant |[V*| is — 1. and the two types of vectors
behave differently.

Another way to explain this property is to define a parity operator P. The oper-
ator P performs the inversion x — —x, y - ~y, z = —z. Then if § is scalar. V
a polar vector, and V* an axial vector,
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PS=3S§
PV=-V
PV* = V*,

and, obviously,
P(V-V*) = —(V. V*).

Thus, V «+ V* is a pseudoscalar S* with the property PS* = —S* and of course
P(SS*) = —58%, P(SV) = —SV, P(§V¥) = SV*

On the passive interpretation of the transformation, it is easy to see why po-
lar vectors behave as they do under inversion. The vector remains unaffected by
the transformation, but the coordinate axes, and therefore the components, change
sign. What then is different for an axial vector? It appears that an axial vector al-
ways carries with it a “handedness” convention, as implied, e.g., by the definition,
Eq. (4.77), of a cross product. Under inversion a right-handed coordinate system
changes to a left-handed system, and the cyclic order requirement of Eq. (4.77)
implies a similar change from the right-haad screw convention to a lefi-hand con-
vention. Hence, even on the passive interpretation, there is an actual change in the
direction of the cross product upon inversion.

It is clear now why a{2 transforms as an axial vector according to Eq. (4.74).
Algebraically, we see that since both r and dr in Eq. (4.75) are polar vectors, then
n, and therefore d€2, must be axial vectors. Geometrically, the inversion of the
coordinates corresponds to the switch from a right-hand screw law to a left-hand
screw to define the sense of n.

The discussion of the cross product provides an opportunity to introduce a
notation that will be most useful on future occasions. The permutation symbol
or Levi-Civita density* ¢,;;, is defined to be zero if any two of the indices {jk
are equal, and otherwise either +1 or —1 according as ijk is an even or odd
permutation of 1, 2, 3. Thus, in terms of the permutation symbol, Eq. (4.77) for
the components of a cross product can be writien

C, = e D, Fr, @17

where the usual summation convention has been employed.

The descriptions of rotation presented so far in this chapter have been devel-
oped so that we can represent the orientation of a rigid body. Note that the trans-
formations primarily involve rotation of the coordinate system (cf. Fig. 4.12a).
The corresponding “active” interpretation of rotation of a vector in a fixed co-
ordinate system therefore implies a rotation in the opposite direction, ie, in a
clockwise sense. But there are many areas of mechanics, or of physics in general
for that matter, where we are concerned with the effects of rotating the physical
system and associated vectors (cf. Fig. 4.12b). The connection between invariaace
of the system under rotation and conservation of angular momentum has already

*Also known interchangeably as the alternating tensor or isotropic tensor of rank 3.
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(a) (b)

FIGURE 4.12 (a) Transformation from the coordinate system (x, y, z) to a new coor-
dinate system (', y’, 2'). By convention, this transformation is considered positive m the
clockwise sense. We refer to this as a passive transformation. (b) The rotation of a body
through an angle ¢’. By convention, the rotation is positive in a counterclockwise sense.
Before the rotation, the coordinates of points of the body were given by (x, y, z); after the
rotation, they are given by (¥, ¥/, 2’). This is called an active transformation because the
physical body moves.

been pointed out (cf. Section 2.6). In such applications it is necessary to consider

the consequences of rotation of vectors in the usual counterclockwise sense. For

reference purposes. a number of rotation formulae given above will he listed here,

but for counterclockwise rotation of vectors. All equations and statements from

here to the end of this section apply only for such counterclockwise rotations.
The rotation formula, Eq. (4.62), becomes

r=rcos®+nm-r)(1 —cos®) + (n x risind, (4.62)
and the corresponding infinitesimal rotation, Eq. (4.75), appears as
drY =dQ xr=(nxd® = —(r x n)dd. 4.75)

The antisymmetric matrix of the infinitesimal rotation, Eq. (4.69), becomes

0 —dQ23  d 0 —n3 RN
€e=| dx 0 —dQ | =| n3 0 —n |dd, (4.69)
—dQ» d 0 —R2 R 0

where n, are the components of the unit vector i along the axis of rotation. Letting
dr stand for the infinitesimal change r’ — r, Eq. (4.66) can then take the form of
a matrix differential equation with respect to the rotation angle:

dr
— = —Nr. 4.7
16 Nr (4.78)
where N is the transpose of the matrix on right in Eq. (4.69") with elements N, ;=

€ pkPi.
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Another useful representation is to write € in Eq. (4.69’) as

EZHIMZdCD
where M, are the three matrices:
00 0 0 01 0O -1 0
Mi=}|0 0 -1|, M= 0 0 0, Ms=1|1 0O
0 1 0 -1 0 0 0 00
4.79

The matrices M, are known as the infinitesimal rotation generators and have the
property that their products are

MEM] - MJM; = [Ml! Mj] = GleMk. (4.80)

The difference between the two matrix products, or commutator, is also called the
Lie bracket or M,, and Eq. (4.80) defines the Lie algebra of the rotation group
parametrized in terms of the rotation angle. To go further into the group theory of
rotation would take us too far afield, but we shall have occasion to refer to these
properties of the rotation operation. (cf. Section 9.5 and Appendix B)

RATE OF CHANGE OF A VECTOR

The concept of an infinitesimal rotation provides a powerful tool for describing
the motion of a rigid body in time. Let us consider some arbitrary vector or pseu-
dovecior G involved in the mechanical problem, such as the position vector of a
point in the body, or the total angular momentum. Usually such a vector will vary
in time as the body moves, but the change will often depend upon the coordinate
system to which the observations are referred. For example, if the vector happens
to be the radius vector from the origin of the body set of axes to a point in the rigid
body, then clearly such a vector appears constant when measured by the body set
of axes. However, to an observer fixed in the space set of axes, the components
of the vector (as measured on the space axes) will vary in time if the body is in
motion.

The change 1n a time d¢ of the components of a general vector G as seen by an
observer in the body system of axes will differ from the corresponding change as
seen by an observer in the space system. A relation between the two differential
changes in G can be derived on the basis of physical arguments. We can write that
the only difference between the two is the effcet of rotation of the body axes:

(dG)space = (AG)pody + (AG)rot-

Now consider a vector fixed in the rigid body. As the body rotates, there is of
course no change in the components of this vector as seen by the body observer,
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i.e., relative to body axes. The only contribution to (dG)space is then the effect of
the rotation of the body. But since the vector is fixed in the body system, it rotates
with it counterclockwise, and the change in the vector as observed in space is that
given by Eq. (4.75'), and hence (dG)y is given by

(dG)rot = dﬂ X G‘

For an arbitrary vector, the change relative to the space axes is the sum of the two
effects:

(dG)space = (dG)hody +dL2 x G. “.81)

The time rate of change of the vector G as seen by the two observers is then
obtained by dividing the terms in Eq. (4.81) by the differential time element dz

under consideration;
d
(—G—) = (gg) + @ x G. (4.82)
dt spdace dr body

Here « is the instantaneous angular velocity of the body defined by the relation™
wdt =dS}. (4.83)

The vector @ lies along the axis of the infinitesimal rotation occurring between ¢
and 7 + dt, a direction known as the instantaneous axis of rotation. In magnitude,
@ measures the instantaneous rate of rotation of the body.

A more formal derivation of the basic Eq. (4.82) can be given in terms of the
orthogonal matrix of transformation between the space and body coordinates. The
component of G along the ith space axis is related to the components along the
body axes:

As the body moves in time, the components G’ will change as will the elements

a;; of the transformation matrix. Hence, the c{1ange in G, in a differential time
element dt is

dG, = a,,dG) +da,G). (4.84)

It is no loss of generality to take the space and body axes as instantaneously
coincident at the time . Components in the two systems will then be the same
instantaneously, but differentials will nof be the same, since the two systems are
moving relative to each other. Thus, G’ = G, but a,,dG’, = dG/, the prime
emphasizing the differential is measureé in the body axis system. The change in
the matrix A in the time dt is thus a change from the unit matrix and therefore

<Note that ¢ 15 #ot the derivauve of any vector.
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corresponds to the matrix € of the infinitesimal rotation. Hence,
da_]l = (é)u =€,

using the antisymmetry property of €. In terms of the permutation symbol €,
the elements of € are such that (cf. Eq. (4.69))

—€ij = —€jxd = €4, A
Equat:on (4.84) can now be written
aG, = dG: + €, d0 G,

The last term on the right will be recogn.zed as the expression for the ith com-
ponent of a cross product, so that the final expression for the relation between
differentials in the two systems is

dG, = dG, + [dQ x G),, (4.85)

which is the same as the ith component of Eq. (4.81).

Equation (4.81) is not so much an equation about a particular vector G asitis a
statement of the transformation of the time derivative betwesn the two coordinate
systems, The arbitrary nature of the veclor G made use of in the dedivation can be
emphasized by writing Eq. (4.82) as an operator equation acting on some given

vector:
d d
— ] = — . 4.86
(dt); (dz)f”‘”‘ (486

Here the subscripts s and r indicate the time derivatives observed in the space
and body (rotating) system of axes, respectively. The resultant vector equation
can then of course be resolved along any desired set of axes, fixed or moving. But
again note that the time rate of change is only relative to the specified coordinate
system. When a time derivative of a vector is with respect to one coordinate $ys-
tem, components may bz taken along another set of coordinate axes only after the
differentiation has been carried out.

Tt is often convenient to express the angular velocity vector in terms of the Eu-
ler angles and their time derivatives. The general infinitesimal rotation associated
with @ can be considered as consisting of three successive infinitesimal rotations
with angular velocities wy = q'b, Wy = 8, Wy = 1// In consequence of the vector
property of infinitesimal rotations. the vector « can be obtained as the sum of the
three separate angular velocity vectors. Unfortunately, the directions wy, g, and
@y, are not symmetrically placed: cwy is along the space z axis, wy is along the
line o nodes, while wy alone is along the body z' axis. However, the orthogonal
transformations B, C, D of Section 4.4 may be used to furnish the components of
these vectors along any desired set of axes.
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The body set of axes proves most useful for discussing the equations of motion,
and we shall therefore obtain the components of e for such a coordinate system.
Since @, is parallel to the space z axis, its components along the body axes are
given by applying the complete orthogonal transformation A = BCD, Egq. (4.46):

(@p)yr = $sinfsiny, (wp)y = ¢sing cos ¥, (@p)y = dcosh.

Note that ¢ has the projection ¢ sin § in the x’, y’ plane, and it is perpendicular to
the line of nodes.

The line of nodes, which is the direction of g, coincides with the &’ axis, so
that the components of ey with respect to the body axes are furmshed by applying
only the final orthogonal transformation B, Eq. (4.45):

(@) =6cosy,  (wp)y =—Bsing,  (wp)y =0.

No transformation is necessary for the components of ey, which lies along the 7’
axis. Adding these components of the separate angular velocitics, the components
of @ with respect to the body axes are

wyr = ¢siné siny + 6 cos ¥
Wy =q§sin9cosz//—ésin¢
wy = pcosf + 9. (4.87)

Similar techniques may be used to express the components of  along the space
set of axes in terms of the Euler angles.

THE CORIOLIS EFFECT

Equation (4.86) is the basic kinematica] law upon which the dynamical equations
of motion for a rigid body are founded. But its validity is not restricted solely to
rigid body motion. It may be used whenever we wish to discuss the motion of a
particle, or system of particles, relative to a rotating coordinate system.

A particularly important problem in this latter category is the description of
particle motion relative to coordinate axes rotating with Earth. Recall that in Sec-
tion 1.1 an inertial system was defined as one in which Newton's laws of motion
are valid. For many purposes, a system of coordinates fixed in the rotating Earth
is a sufficient approximation to an inertial system. Howevet, the system of coordi-
nates in which the local stars are fixed comes still closer to the ideal inertial sys-
tem. Detailed examination shows there are observable effects arising from Earth’s
rotation relative to this nearly inertial system. Equation (4.86) provides the needed
modifications of the equations of motion relative to the noninertial system fixed
in the rotating Earth.

The initial step is to apply Eq. (4.86) to the radius vector, r, from the origin of
the terrestrial system to the given particle:
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V.=V, +wXxTr, (4.88)

where v; and v, are the velocities of the particle relative to the space and rotating
set of axes, respectively, and ew is the (constant) angular velocity of Earth relative
to the inertial system. In the second step, kq. (4.86) 18 used to obtain the time rate
of change of v:

gv_s —_ g, = ﬁ + XV
dt ), 7 \ldt ), @ XV
=a,+2(wxv,)+ox (wxr), 4.89)

where v, has been substituted from Eq. (4.88), and where a, and a, are the accel-
erations of the particle in the two systems. Finally, the equation of motion, which
in the mertial system is simply

F = ma,,
expands, when expressed in the rotating coordinates, into the equation
F—2m(w xv,) —mw x (@ X r) = ma,. (4.90)

To an observer in the rotating system, it therefore appears as if the particle is
moving under the influence of an effective force Feg:

Fer=F—2m(®w xv;) —mo x (& X1). 4.9D

Let us examine the nature of the terms appearing in Eq. (4.91). The last term is
a vector normal to @ and pointing outward. Further, its magnitude is mao?rsing.
It will therefore be recognized that this term provides the familiar centrifugal
force. When the particle is stationary in the moving system, the centrifugal force
is the only added term in the effective force. However, when the particle is mov-
ing, the middle term known as the Coriolis effect* comes into play. The order
of magnitude of both of these quantities may easily be calculated for a particle
on Earth’s surface. Earth rotates counterclockwise about the north pole with an
angular velocity relative (0 the (ixed stars.

27 3665 -5 —1
w= (24><3600) (365.5) =7.292 x 1077 ".

Here the first set of parentheses gives the angular velocity relative to the radius
vector to the Sun. The quantity in the second parentheses, the ratio of the number
of sidereal days in a year to the corresponding number of solar days, is the correc-
tion factor to give the angular velocity relative to the fixed stars. With this value

*The term Coriolls effect s used nstead of the older term, Coriolis torce, o remmnd us that this effect
exists because we are using a noninertial frame, In a proper wnertial frame, the effect does not exist
You can always visualize the Coriolis effect by asking what is happening in an 1nertial frame.
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for w, and with r equal to Earth’s equatorial radius, the maximum centripetal
acceleration is

@*r — 3.38 cm/s?,

or about 0.3% of the acceleration of gravity. While small, this acceleration is
by no means negligible. However, the measured effects of gravity represent the
combination of the gravitational field of the mass distribution of Earth and the
effects of centripetal acceleration. It has become customary to speak of the sum
of the two as Earth’s gravity field, as distinguished from its gravitational held.

The situation is further complicated by the effect of the centripetal acceleration
in flattening the rotating Earth. If Earth were completely fluid, the effect of rota-
tion would be to deform it into the shape of an ellipsoid whose surface would be
an equipotential surface of the combined gravity field. The mean level of Earth’s
seas conforms very closely to this equilibrium ellipsoid (except for local varia-
tions of wind and tide) and defines what is called the geoid.

Except for effects of local perturbations, the force of gravity will be perpen-
dicular to the equipotent:al surface of the geoid. Accordingly, the local vertical is
defined as the direction perpendicular to the geoid at the given point on the suar-
face. For phenomena that occur in the vicinity of a particular spot on Earth, the
centripetal acceleration terms in Eq. (4.91) can be considered as swallowed up in
the gravitational acceleration g, which will be oriented in the local vertical direc-
tion. The magnitude of g of course varies with the latitude on Earth. The effects
of centripetal acceleration and the flattening of Earth combine to make g about
0.53% less at the equator than at the poles.

Incidentally, the centrifugal force on a particle arising from Earth’s revolution
around the Sun is appreciable compared to gravity, but it is almost exactly bal-
anced by the gravitational attraction to the Sun. If we analyze the motion of the
Sun-Earth system from a frame rotating with Earth, it is of course just the bal-
ance between the centrifugal effect and the gravitational attraction that keeps the
Earth (and all that are on it) and Sun separated. An analysis in a Newtonian iner-
tial frame gives a different picture. As was described in Section 3.3, the angular
momenturmn contributes to the effective potential energy to keep the Earth in orbit.

The Corolis effect on a moving particle is perpendicular to both @ and v.*
In the northern hemisphere. where @ points out of the ground, the Coriolis effect
2m(v x ) tends to deflect a projective shot along Earth’s surface, to the right
of its direction of travel (cf, Fig, 4.13). The Coriolis deflection reverses direction
in the southern hemisphere and is zero at the equator, where e is horizontal. The
magnitude of the Coriolis acceleration is always less than

200 ~ 1.5 x 10~ %y,

*From here on. the subsesipt » will be dropped from v as all velocities wil: be taken with respect to
the rotating coordinate axes only
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Honsontal trajeciory

FIGURE 4.13 Direction of Coriolis deflection mn the northern hemisphere.

which for a velocity of 10° em/s (roughly 2000 mi/h) is 15 cm/s2, or about 0.015g.
Normally, such an acceleration is extremely small, but there are instances when
it becomes important. To take an artificial illustration, suppose 4 projectile were
fired horizontally at the north pole. The Coriolis acceleration would then have the
magnitude 2wv, so that the linear deflection after a time ¢ is wvt?. The angular
deflection would be the linear deflection divided by the distance of travel:

2
AL (4.92)

vt

which is the angle Earth rotates in the time ¢. Physically, this result means that
a projectile shot off at the north pole has no initial rotational motion and hence
its trajectory in the inertial space is a straight line, the apparent deflection be-
ing due to Earth rotating beneath it. Some idea of the magnitude of the effect
can be cbtained by substituting a time of flight of 100 s—not unusual for largs
projectiles—in Eq. (4.92). The angular deflection is then of the order of 7 x 10~
radians, about 0.4°. which 1s not inconsiderable. Clearly the effect is even morz
important for long-range missiles, which have a much longer time of flight.

The Coriolis effect also plays a significant role in many oceanographic and
meteorological phenomena involving displacements of masses of matter over long
distances, such as the circulation pattern of the trade winds and the course of
the Gulif stream. A full description of these phenomena requires the solution of
complex hydrodynamic problems in which the Coriolis acceleration is only one
among many terms involved. Tt is possible however to give some indication of the
contribution of Coriolis effects by considering a highly simplified picture of one
particular meteorological problem—the large-scale horizontal wind circulation.
Masses of air tend to move, other things being equal, from regions of high pressure
to regions of low pressure—the so-called pressure-gradient flow. In the vertical
direction the pressure gradient is roughly balanced by gravitational forces so that
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Isobars

High

FIGURE 4.14 Deflection of wind from the direction of the pressure gradient by the
Coriolis effect (shown for the northern hemisphere).

it is only in the horizontal plane that there are persistent long-range motions of
air masses—which we perceive as winds. The pressure gradient forces are quite
modest, and comparablz in magnitude to the Coriolis effects acting on air masses
moving at usual speeds. In the absence of Coriolis effects, the wind directions
would ideally be perpendicular to the isobars, as shown in Fig. 4.14. However. the
Coriolis effects deflect the wind to the right of this direction in the sense indicated
in the figure. The deflection to the right continues until the wind vector is parallel
to the isobars and the Coriolis effect is in the opposite direction to, and ideally
Just balances, the pressure-gradient force. The wind then continues parallel to the
isobars, circulating in the northern hemisphere in a counterclockwise direction
about a center of low pressure. In the southern hemisphere, the Coriolis effect
acts in the opposite direction, and the cyclonic direction (i.e., the flow around
a low-pressure center) 1s clockwise. (Such a wind flow, deflected parallel to the
isobars, is known as a geostrophic wind.) In this simplified picture, the effect of
friction has been neglected. At atmospheric altitudes below several kilometers,
the friction effects of eddy viscosity become important, and the equilibrium wind
direction never becomes quite parallel to the isobars, as indicated in Fig. 4.15.
Another classical instance where Coriolis effect produces a measurable effect
is in the deflection from the vertical of a freely falling particle. Since the parti-
cle velocity is almost vertical and e lies in the north-south vertical plane, the

>P)

N

(a) ldealized (b) Actual

FIGURE 415 Cyclone pattemn in the northern hemisphere.
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deflecting force 2m(v x w) is in the east-west direction. Thus, in the northem
hemisphere, a body falling freely will be deflected to the East. Calculation of the
deflection is greatly simplified by choosing the 7 axis of the terrestrial coordinate
system to be along the direction of the upward vertical as previously defined. If
the y axis is taken as pointing North, and the frictional ettect ot the atmosphere 1s
neglected, then the equation of motion in the x (East) direction is

d?x
mgt—f = —2m(e X V),

= —2mwv; sinf, (4.93)

where 6 is the co-latitude The effect of the Coriolis effect on v, would constitute
a small correction to the deflection, which itself is very small. Hence, the vertical
velocity appearing in (4.93) may be computed as if Cotiolis effects were absent.

v?_ = _gt.

The integral of this is

2z

t=[=

8

With these values, Eq. (4.93) may be easily integrated to give the deflection® as

wg 3 .
x = —¢°sinf
3

o [Q2)} .
x=— [——sind,
3 V g

An order of magnitude of the deflection can be obtained by assuming 8 = /2
(cotresponding to the equator) and z = 100 m. The deflection is then, roughly,

or

x ~2.2cm.

The actual experiment is difficult to perform, as the small deflection may often be
masked by the effects of wind currents, viscosity, or other disturbing influences.
More easily observable is the well-known experiment of the Foucault pendu-
lum. If a pendulum is set swinging at the north pole in a given plane in space,
then its linear momentum perpendicular to the plane is zero, and it will continue
to swing in this invariable plane while Earth rotates beneath it. To an observer
on Earth, the plane of oscillation appears to rotate once a day. At other latitudes
the result is more complicated, but the phenomenon is qualitatively the same and
detailed calculation will be left as an exercise.
*Agan, we neglect the frictonzl effects of the atmosphere

It 15 easy to show, using Eq. /4.93), that a particle projected upward wall fail back to the ground
westward of the original launching spot.
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Effects due to the Coriolis terms also appear in atomic physics. Thus, two types
of motion may occur simultaneously in polyatomic molecules: The molecule ro-
tates as arigid whole, and the atoms vibrate about their equilibrium positions As
a result of the vibrations, the atoms are in motion relative to the rotating coordi-
nate system of the molecule. The Coriolis term will then be different from zero
and will cause the atoms to move in a direction perpendicular to the original os-
cillations. Perturbattons in molecular spectra due to Coriolis effects thus appear
as interactions between the rotational and vibrational motions of the molecule.

DERIVATIONS

1.

7.

P-ove that matrix multiplication is associative. Show that the product of two orthogo-
nal matrices 1s also orthogonal.

Prove the following properties of the transposed and adjoint matnces:
AB=BA.
(AB)' = BTAT.

Show that the trace of 2 matrix 1s invanant under any similarity transformation. Show

also that the antisymmetry property of a matrix is preserved under an orthogonal sim-

flarity nansfommativa

(a) By examining the eigenvalues of an aatisymmetnic 3 x 3 real matrix A, show that
1 £ A is nonsingular.

(b) Show then that under the same conditions the matrix

B=(1+A)1-A"!

is orthogonal.

Ootamn the matrix elements of the general rotation matrix in terms of the Euler angles,
Eq. (4.46), by performing the multiplications of the successive component rotation
matrices. Verify directly that the matrix elements obey the ortaogonality conditions.

The body set of axes can be related to the space set in terms of Buler’s angles by the
following set of rotations:

(a) Rotation about the x axis by an angle 6

(b) Rotation about the 7’ axis by an angle .

(¢} Rotation about the old z axis by an angle ¢.

Show that this sequence leads to the same elements of the matrix of transformation as
the sequence of rotations given in the book. [Hmt: It is not necessary to carry oul the
explicit multiplication of the rotation matnces.]

If A is the matrix ot a rotation through 180° about any axis, show that f

P+ = J(1£A),
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10.

11.

12,

13.

14.

then P2 = P.. Obtain the elements of P+ inany swtabie system, and find a geometric
interpretation of the operation P and P_ on any vector F.

(a) Show that the rotation matrix in the form of Eq. (4.47') cannot be put 1n the form
of the matnx of the inversion transformation S.

(b) Venfy by direct multiplication that the matrix in Eq. (4.47') is orthogonal.
p

Show that any rotation can be represented by successive reflection m two planes, both
passing through the axis of rotation with the planar angle ®/2 between them.

If B is a square matrix and A is the exponential of B, defined by the infinite series
expznsion of the exponential,

1
2

Bn

A=eB=1+B+ B4k — oo,

then prove the following properties

(a) oBoC = oB+C, providing B and C commute
(b) A=l =B

(©) fCBC" = CAc—l

(d) Ais orthogonal if B is antisymmetnc.

Verify the relation
| - B| = (-1)"|B|

for the determunant of an n x n matrix B.

In a set of axes where the 7 axis 1s the axis of rotation of a finite rotation, the rotation
matrix is given by Eq. (4.43) with 6 replaced by the angle of finite rotation ®. Derive
the rotation tormula. kq. (4.62), by transforming to an arbifrary coordinate system,
expressing the orthogonal matrix of transformation in terms of the direction cosines
of the axis of the finite rotation.

(a) Suppose two successive coordinate rotations through angles &y and ®» are car-
ned out. equivalent to a single rotation through an angle . Show that &, &5, and
® can be considered as the sides of a spherical triangle with the angle opposite to
@ gmven by the angle between the two axes of rotation.

(b) Show that a rotation about any given axis can be obtained as the product of two
successive rotations, each through 180°

(a) Venfy that the permutation symbol satsfies the following identity in terms of
Kronecker delta symbols:

€ p€rmp = aa*alm - almajr-

(b) Show that

€ijp€isk = 2.
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15. Show that the components of the angular velocity along the space set of axes are given
in terms of the Euler angles by
wx =@ cos¢ + ¥ sindsing,
wy = Osing — Yrsinfcos g,
w; = grcosf + .
16. Show that the Euler parameter ¢y has the equation of motion
—2ép = ejwy + qwy + e3wy,

where the prime denotes the body set of axes. Find the corresponding equations for the
other three Euler parameters and for the complex Cayley-Klein parameters o and 8.

17. Venfy directly that the matrix generators of infinitesimal rotation, M, as given by
Eq. (4.79) obey the commutation relations

M;, M]] = &,xMy.

18. (a) Find the vector equation describing the reflection of r in a plane whose unit nor-
mal is n.
(b) Show that if ,, i = 1, 2,3, are the direction cosmes of n, then the matnx of
transformation has the elements

A!] = 8,} —Zl,l],
and verify that A is an improper orthogonal matrix.

19, Figures 4.9 and 4.10 show that the order of finite rotations leads to different results.
Use the notation that A (e, 1) where A is a rotation in the direction of 1, through an
angle a. Let n; and ny be two orthogonal directions.

(a) If x is the position vector of a point on a rigid body, which is then rotated by an
angle € arvund the origin, shuw that the new value of x is

X =y %1, +[X— L1y X)) cos @ — ., X Xsin6.

From this, obtain the formula for A(/2, 1) and derive the two rotations in the
figures.

(b) Duiscuss these two rotations. [Hint: The answer will involve a rotation by the zngle
27 in a direction (1/+/3)(1, 1, 1).]

20, Express the “rolling” constraint of a sphere on a plane surface in terms of the Euler
angles. Show that the conditions are nonintegrable and that the constraint is therefore
nonholonomic.

EXERCISES

21, A particle is thrown up vertically with initial speed vy, reaches a maximum height
and fails back to ground. Show that the Coriolis deflection when it again reaches the
ground is opposite in direction, and four times greater in magnitude, than the Coriolis
deflection when it is dropped at rest from the same maximum height.
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22,

28.

A projectile is fired horizontally along Earth’s surface. Show that to a first approxima-
tion the angular deviation from the direction of fire resulting from the Coriolis effect
varies linearly with time at a rate

wWwCoso,

where @ 15 the angular frequency of Earth’s rotation and & is the co-latitude, the di-
rection of deviation being to the right in the northern hemisphere.

The Foucault pendulum experiment consists in setting a long pendulum in motion at
a point on the surface of the rotating Earth with its momentum originally in the ver-
tical plane containing the penduluin bub and the point of suspension. Show that the
pendulum’s subsequent motion may be described by saying that the plane of oscilla-
tion rotates uniformly 27 cos @ radians per day, where 8 is the co-latitude. What is the
direction of rotation? The approximation of small oscillations may be used, if desired.

A wagon wheel with spokes is mounted on a vertical axis so it 1s free to rotate in the
horizontal plane. The wheel is rotating with an angular speed of @ = 3.0 radian/s. A
bug crawls out on one of the spokes of the wheel with a velocity of 0.5 cm/s holding
on to the spoke with a coefficient of fricton ¢ = 0.30. How far can the bug crawl
along the spoke before 1t starts to slip?

A carousel (counter-clockwise merry-go-round) starts from rest and accelerates &t a
constant angular accleration of 0.02 revolutions/s2. A girl sitiing on a bench on the
platform 7.0 m from the center is holding a 3.0 kg ball. Calculate the magnitude and
direction of the force she must exert to hold the ball 6.0 s after the carousel starts to
move. Give the direction with respect to the line from the center of rotation to the girl.
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The Rigid Body Equations
of Motion

Chapter 4 presents all the kinematical tools nceded in the discussion of rigid body
motion. In the Euler angles we have a set of three coordinates, defined rather
unsymmetrically it is true, yet suitable for use as the generalized coordinates de-
scribing the orientation of the rigid body. In addition, the method of orthoganal
transformations, and the associated matrix algebra, furnish a powerful and ele-
gant technique for investigating the characteristics of rigid body motion. We have
alrcady had onc application of the technique in deriving Lq. (4.86), the relation
between the states of change of a vector as viewed in the space system and in
the body system. These tools will now be applied to obtain the Euler dynamical
equations of motion of the rigid body in their most convenient form. With the help
of the equations of mation, some simple but highly important problems of rigid
body motion can be discussed.

ANGULAR MOMENTUM AND KINETIC ENERGY
OF MOTION ABOUT A POINT

Chasles’ theorem states that any general displacement of a rigid body can be rep-
1esented by a uaunslation plus a rowation, The theorem suggests that it ought to
be possible to split the problem of rigid body motion into two separate phases,
one concerned solely with the translational motion of the body, the other, with its
rotational motion. Of course, if one point of the body is fixed, the separation is
obvious, for then there is only a rotational motion about the fixed point, without
any translation. But even for a general type of motion such a separation is often
possible. The six coordinates needed to describe the motion have already been
formed into two sets in accordance with such a division: the three Cartesian coor-
dinates of a point fixed in the rigid body to describe the translational motion and.
say, the three Euler angles for the motion about the point. If, further, the origin of
the body system is chosen to be the center of mass, then by Eq. (1.28) the total
angular momentum divides naturally into contributions from the translation of the
center of mass and from the rotation about the center of mass. 'Lhe former term
will involve only the Cartesian coordinates of the center of mass, the latter only
the angle coordinates. By Eq. (1.31), a similar division holds for the total kinetic
energy T, which can be written in the form

T =3Mv*+T(6,0,9),
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as the sum of the kinetic energy of the entire body as if concentrated at the center
of mass, plus the kinetic energy of motion about the center of mass.

Often the potential energy can be similarly divided, each term involving only
one of the coordinate sets, either the trandlational or rotational Thus, the poten-
tial energy in a uniform gravitational field will depend only upon the Cartesian
vertical coordinate of the center of gravity.* Or if the force on a body is due to
a uniform magnetic field, B, acting on its magnetic dipole moment, M, then the
potential is proportional to M - B, which involves only the onentation of the body.
Certainly, almost all problems soluble in practice will allow for such a separation.
In such a case, the entire mechanical problem does indeed split into two. The La
grangian, L = T — V, dwvides into two parts, one involving only the translational
coordinates, the other only the angle coordinates. These two groups of coordinates
will then be completely separated, and the translational and rotational problems
can be solved independently of each other.

It is of obvious importance therefore to obtain expressions for the angular mo-
mentum and kinetic energy of the motion about some point fixed in the body. To
do so, we will make abundant use of Eq. (4.86) linking derivatives relative to a
coordinate system fixed at some point in the rigid body. It is intuitively obvious
that the rotation angle of a rigid body displacement, as also the instantaneous an-
gular velocity vector, is independent of the choice of origin of the body system
of axes. The essence of the rigid body corstraint is that all particles of the body
move znd rotate together. However, a formal proof is easily constructed.

Let R; and R; be the position vectors, relative to a fixed set of coordinates, of
the origins of two sets of body coordinates (cf. Fig. 5.1). The difference vector is
denoted by R:

R =R;+R.

FIGURE 5,1 Vectorial relauen between sets of rigid body coordinates with different
origins.

*The center of gravity of course coincides with the center of mass m a umform gravitational field.
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If the origin of the second set of axes is considered as a pont defined relative to
the first, then the time derivative of Ry relative to the space axes is given by

dR; dRy dR dR;
Ty = — ) - — R.
(&), (&), (@)~ (&) r~

The last step follows from Eq. (4.86), recalling that the derivatives of R relative
to any rigid body axes must vanish, and with w; as being the angular velocity
vector appropriate to the first coordinate system. Alternatively, the origin of the
first coordinate system can be considered as fixed in the second system with the
position vector —R. In the same manner, then, the derivative of the position vector
R; to this origin relative to the fixed-space axes can be written as

(de (dRz) dR) dR;
— ) ={—) -{—) ={— |} —o xR
dr ], dr J dt /, dr ],
A comparison of these two cxpressions shows (@) — @;) x R = 0. Any differ-
ence in the angular velocity vectors at two arbitrary points must lie along the line
joining the two points. Assuming the @ vector field is continuous, the only possi-
ble solution for all pairs of points is that the two angular velocity vectors must be
equal:

o) — wy ¥

The angular velocity vector is the same for all coordinate systems fixed in the
rigid body.
When a rigid body moves with one point stationary, the total angular momen-
tum about that point is
L=m( xv), G.1)

(employing the summation convention) where r, and v, are the radius vector and
velocity, respectively, ot the ith particle relative to the given point. Since r, 15 a
fixed vector relative to the body, the velocity v, with respect to the space set of
axes arises solely from the rotational motion of the rigid body about the fixed
point. From Eq. (4.86), v; is then

Vv, =@XF,. 5.2
Hence, Eq. (5.1) can be written as
T.=m, [r, x (o xnr)],
or, expanding the triple cross product,
L=m, [cor,2 —r(r . m)] . (5.3

*Sec also N A. Lemos, Am. Jr. Phys , 68(7) 2000, po. 668—669.
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Again expanding, the x-component of the angular momentum becomes
Ly, =wm (r,2 - x,2) — Wy X, Y, — W M X, 2, 5.4)

with similar equations for the other components of L. Thus, each component of
the angular momentum is a linear function of all the components of the angular
velocity. The angular momentum vector is related to the angular velocity by a
linear transformation. To emphasize the similarity of (5.4) with the equations of
a linear transformation, (4.12), we may write L, as

Lx - Ixxwx + Ix)wy + Ixzwz.
Analogously, for Ly and L, we have

Ly = Iyxwx + Iy}xwy + Iyzwz, (5.5)
LZ = sza)x + .Izywy '+' Izzwz.
The nine coefficients I, Iy, etc., are the nine elements of the transformation

matrix. The diagonal elements are known as moment of inertia coefficients, and
have the following form

IXX = ml(rlz - xz)a (5.6)

i

while the off-diagonal elements are designated as products of inertia, a typical
one being

I.\:y = —mXh. (5.7

In Eqs. (5.6) and (5.7), the matrix elements appear in the form suitable if the
rigid body is composed of discrete particles. For continuous bodies the summa-
tion is replaced by a volume integration, with the particle mass becoming a mass
density. Thus, the diagonal element I, appears as

L = f p@E* - x3)dV. (5.6"
vV

With a slight change in notation, an expression for all matrix elements can te
stated for continuous bodies. If the coordinate axes are denoted by x,, j = 1,2, 3,
then the matrix element / ; can be written

Ie= fv P28k — x;x1) dV. (5.8)
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Thus far, the coordinate system used in resolving the components of L has not
been specified. From now on, we will take it to be a system fixed in the body.*
The various distances x,, ),, z, are then constant in time, so that the matrix el-
ements are likewise constants, pecnliar fo the hody involved, and dependent on
the origin and orientation of the particular body set of axes in which they are
expressed.

Equations (5.5) relating the components of L and e« can be summarized by a
single operator equation,

L =lw, 5.9

where the symbol 1 stands for the operator whose matrix elements are the in-
ertia coefficients appearing in (5.5), and @ and L are column matrices. Of the
two interpretations that have been given to the operator of a linear transformation
(cf. Section 4.2), it is clear that here | must be thought of as acting upon the vector
. and not upon the coordinate system. The vectors L and @ are two physically
different vectors, having different dimenstons, and are not merely the same vector
expressed in two different coordinate systems. Unlike the operator of rotation, |
will have dimensions—mass times length squared—and it is not restricted by any
orthogonality conditions. Equation (5.9) is to be read as the operator | acting upon
the vector  results in the physically new vector L.

While full use will be made of the matrix algebra techniques developed in
the discussion of the rotation operator, more attention must be paid here to the
nature and physical character of the operator per se. However, a certain amount
of preliminary mathematical formalism needs first to be discussed. Those already
famibar with tensors can proceed immediately to Section 5 3.

TENSORS

The quantity | may be considered as defining the quotient of L and ¢ for the prod-
uct of I and e gives L. Now, the quotient of two quantities is often not a member
of the same class as the dividing factors, but may belong to a more complicated
class. Thus, the quotient of two integers is in general not an integer but rather a
rational number. Similarly, the quotient of two vectors, as 1s well known, cannot
be defined consistently within the class of vectors. It is not surprising, therefore
to find that | is a new type of quantity, a fensor of the second rank.

In a Cartesian three-dimensional space, a tensor T of the Nth rank may be de-
fined for our purposes as a quantity having 3" components T;;;  (with N indices)
that transform under an orthogonal transformation of coordinates, A, according to

*In Chapter 4, such a system was denoted by pnmes. As components along spatial axes are ratcly
used here, this convention will be dropped from now on to stmplify the notation. Unless otherwise
specified, all coordinates used for the rest of the chapter refer to systems fixed in the rigid body.
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the following scheme:*
T}’jk x) = W ymakn - - - Timn  (X). (5.10)

By this definition, a tenson of the zeto 1aitk has one component, which is invariant
under an orthogonal transformation. Hence, a scalar is a tensor of zero rank. A
tensor of the first rank has three components transforming as

’
I =ayT).

Comparison with the transformation equations for a vector, (4.12°), shows that
a tensor of the first rank is completely equivalent to a vector.t Finally, the nine
components of a tensor of the second rank transform as

7,’1 = aua Ty (5.11)

Rigorously speaking, we must distinguish between a second-rank tensor T and
the square matrix formed from its components. A tensor is defined only in terms of
its transformation properties under orthogonal coordinate transformations. On the
other hand, a matrix is in no way restricted in the types of transformations it may
undergo and indeed may be considered entirely independently of its properties
under some particular class of transformations. Nevertheless, the distinction must
not be stressed unduly. Within the restricted domain of orthogonal transforma-
tions, there is a practical 1dentity. The tensor components and the matrix elements
are manipulated in the same fashion; for every tensor equation there will be a
corresponding matrix equation, and vice versa. By Eq. (4.41), the components of
a square matrix T transform under a linear change of coordinates defined by the
matrix A according to a similarity transformation:

T =ATA"L.
For an orthogonal transformation, we therefore have

T = ATA (5.12)

#In o Cartesian space {that is, with orthogonal straight-line axes) there 1s no distinction between “co-
variant™ and *contravariant” indices, and the terminology wilf not be needed Indeed, strictly speaking
the tensors defined here should be denoted as “Cartesian tensors”” As this 1s the only type of tensor
that will be used 1n this book (except 1n Chapters 7 and 13), the adjective will be omutted in subsequent
discussions.

| A pseudotensor in three dimensions transforms as a tensor except under inversion, In general, the
transformation equation for a pseudotensor T* of the A'th rank 1s (cf. Eq. (4.74))

i = Alagemare T,
and the santy operation P gives
PT* = (_I)N'l']]-»%

As rigid body mouon involves only proper rotations no further use will be made here of the gencral
pseudotensor
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or

T, = aitTuay. (5.13)
Comparison with Eq. (5.11) thus shows that the matrix components transform
identically, under an orthogonal transformation, with the components of a tensor
of the second rank. All the terminology and operations of matrix algebra, such
as “transpose” and “antisymmetrical” can be applied to tensors without change.
The equivalence between the tensor and the matrix is not restricted to tensors of
the second rank. For example, we already know that the components of a vec-
tor, which is a tensor of the first rank, form a column or row matrix and vector
manipulation may be treated completely in terms of these associated matrices.

Two vectors can be used to construct a second-rank tensor, T. Let A and B be
vectors with components A, and B; and construct the tensor T, by

T, — AB,. (5.14)

For example, if A and B are two-dimensional vectors,*
T - (Txx Txy) = (AXBX AxBy)
Tyx Tyy AyB: AyB,

Since each individual vector transforms as a vector under a Cartesian transforma-
tion, each component of T will transform as required by Eq. (5.10). For example,

3 3

! ’ !
T.Xy = Zzlax,ayjzj = ax'ayJAlB] = aalAlayJBj = AXB)”
1=1j=

so T is a tensor.
The types of operations performed with vectors can be combined with tensors
in an obvious way. There is a unit tensor, 1, whose components are

1i; =6, (5.15)
where §;; is the delta function (also called the Kronecker delta), §, , =lifi=j,

and zero otherwise. The dot product on the right of a tensor T with a vector C is
defined as the vector D by

3
D=T-C where D, = ) " T,,C, = T,,C,
J=

*To distinguish between matrices which are transformations and tensors which are physical quantities
we use | ] for matrices and () for tensors.
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and the dot product on the left with a vector F is defined as the vector E by

3
E=F.T where E, = Y F,T), = F,T},.
j=1

A scalar S can be constructed by a double dot product

3 3
S=F.T-C where S=) Y FT,;C,=FT,C,.

1—1y-—-1

These processes are termed contraction. If the tensor T is constructed of two vec-
tors A and B as in Eq. (5.14), then

T-C=AB-C)=B-CA. and F.T=(F-A)B=(A-FB.

THE INERTIA TENSOR AND THE MOMENT OF INERTIA

Considered as a linear operator that transforms ¢ into L, the matrix I has elements
that behave as the elements of a second-rank tensor. The quantity I is therefore
identified as a second-rank tensor and is usually called the moment of inertia
tensor or briefly the inertia tensor.

The kinetic energy of motion about a point is

2

T = %m;v, N

where v, is the velocity of the ith particle relative to the fixed point as measured
in the space axes. By Eq. (5.2), T may also be written as

T=jmv - (wxr),
which, upon permuting the vectors in the triple dot product, becomes

o
T = — 'm,(l‘, X V,).
2
The quantity summed over i will be recognized as the angular momentum of the
body about the origin, and in consequence the kinetic energy can be written in the
form

w-L o-l-w

T =
2 2

(5.16)

Let nbe a unit vector in the direction of ¢ so that @ = wn. Then an alternative
form for the kinetic energy is



192

Chapter 5 The Rigid Body Equations of Motion

2
@ 1
T=—n-l-n==lw? 5.17
3 n.l-n 7 ® (5.17)
where [ is a scalar, defined by
I=n-l-n=m, [rf—(r,-n)2], (5.18)

and known as the moment of inertia aboui the axis of rotation.

In the usuval elementary discussions, the moment of inertia about an axis is
defined as the sum, over the particles of the body, of the product of the particle
mass and the square of the perpendicular distance from the axis. It must be shown
that this definition is in accord with the expression given in Eq. (5.18). The per-
pendicular distance is equal to the magnitude of the vector r, x n (cf. Fig. 5.2).
Therefore, the customary definition of / may be written as

I=m@ xn)(r, xn). (5.19)

Multiplymg and dividing by w?, this definition of I may also be written as
I = 1;(co xr).(wxr,).
w

But each vector in the dot product is exactly the relative velocity ¥, as measured
in the space system of axes. Hence, I so defined is related to the kinetic energy
by

2T

I=—,

?

which is the same as Eq (5 17), and therefore 7 must be identical with the scalar
defined by Eq. (5.19).

The value of the moment of inertia depends upon the direction of the axis of
rotation. As e usually changes its direction with respect to the body 1n the course

FIGURE 5.2 The definition of the moment of mertia.
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Center
of mass

FIGURE 5.3 The vectors involved in the relation between moments of inertia about
parallel axes.

of time, the moment of inertia must also be considered a function of time. When
the body is constrained so as to rotate only about a fixed axis, then the moment
of inertia is a constant. In such a case, the kinetic energy (5.16) is almost in the
form required to fashion the Lagrangian and the equations of motion. The one
further step needed is to express w as the time derivative of some angle, which
can usually be done without difficulty.

Along with the inertia tensor, the moment of inertia also depends upon the
choice of origin of the body set of axes. However, the moment of inertia about
some given axis is related simply to the moment about a parallel axis through the
center of mass. Let the vector from the given origin O to the center of mass be
R, and let the radii vectors from () and the center of mass to the ith particle be
r, and r}, respectively. The three vectors so defined are connected by the relation
(cf. Fig. 5.3)

rr=R+r. (5.20)
The moment of inertia about the axis a is therefore
Li=m@ xn)?=m [(r, + R) x n]?
or
L=MRxn?+ m (r} x w2 + 2m,; (R x n) - (¥, x m),

where M is the total mass of the body. The last term in this expression can be
rearranged as

=2R x n) - (n x m,r}).
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By the definition of center of mass, the summation m,r] vanishes. Hence, I, can
be expressed in tetms of the moment about the parallel axis b as

Io=1I+ MR x n)? (5.21)
= I, + MR?sin? 0.

The magnitude of R x n, which has the value R sin @, where 6 is the angle between
R and n, is the perpendicular distance of the center of mass from the axis passing
through 0. Consequently, the moment of inertia about a given axis is equal to the
moment of inertia about a parallel axis throngh the center of mass plus the moment
of inertia of the body, as if concentrated at the center of mass, with respect to the
original axis.

The inertia tensor is defined in general from the kinetic energy of rotation about
an axis, and is written as

1 2 1 2
Trotation = m, (wxr) = ia)awﬁmz(aaﬂrl - rldrtﬂ)s

where Greek letters indicate the components of @ and r,. In an 1nertial frame, the
sum is over the particles in the body, and r,,, is the ath component of the position
of the ith particle. Because Trouuon 18 a bilinear form in the components of o, it
can be written as

Trotauon = % wfgitg,
where
lop = mi(aﬂfﬁrzz — Na?ip) (522)

is the moment of inertia tensor. To get the moment of inertia about an axis through
the center of mass, choose the rotation about this axis For a body with a contin-
uous distribution of density p (), the sums in the components of the moment of
inertia tensor in Eq. (5.22) reduce to

log = f pr) (50,,31'2 —Ta¥p) av. (523
\'%

As an example, let us consider a homogeneous cube of density p, mass M,
and side a. Choose the origin to be at one corner and the three edges adjacent
to that corner to lie on the +x, +y, and +z axes. If we define » = Ma?, then
straightforward integration of Eq. (5.23) gives

b —3b -Lb
I=|-16 %0 -1
-3 -l %
Thus, both the moment of inertia and the inertia tensor possess a type of revolu-

tion, relative to the center of mass, very similar to that found for the linear and
angular momentum and the kinetic energy in Section (1.2).
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5.4 B THE EIGENVALUES OF THE INERTIA TENSOR AND
THE PRINCIPAL AXIS TRANSFORMATION

The preceding discussion emphasizes the important role the inertia tensor plays in
the discussion of the mction of rigid bodies. An examination, at this point, of the
properties of this tensor and its associated matrix will therefore prove of consid-
erable interest. From the defining equation, (5.7), it is seen that the components
of the tensor are symmetrical; that is

Ly =1y, (5.24)

This means that, while the inertia tensor will in general have nine components,
only six of them will be independent—the three along the diagonal plus three of
the off-diagonal elements.

The inertia coefficients depend both upon the location of the origin of the body
set of axes and upon the orientation of these axes with respect to the body. This
symmetry suggests that there exists a set of coordinates in which the tensor is
diagonal with the three principal values /i, I>, and I5. In this system, the compo-
nents of L. would involve only the corresponding component of @, thus*

Ly =i, Ly = b, L3 = B (3.25)
A sim:lar simplification would also occur in the form of the kinetic energy:

T = % = %zlwf + %Igw% + %Iga)%. (5.26)
We can show that it is always possible to find such axes, and the proof is based
essertially on the synunetric nature of the inerlia tensor.

There are several ways to understand vectors and tensors. For example, a vector
is a quantity defined by its transformation properties. In any set of coordinates, a
vector is specified by its three components, e.g.,

V = in + V}'j + Vzk, (5.27)

or by its magnitude and direction. In any frame, the magnitude is given by
/VZ+ V24 V2, and the direction is given by the polar angles 6 and ¢. An
alternative is to use the first two Euler angles to specify a new z axis chosen such
that the vector’s direction is along that axis. Since the vector lies along that z axis,
the third Euler angle is not needed.
An approach similar to this latter method can be used for the symmetric mo-
ment of inertia tensor. Consider the moment of inertia of a body about an axis
passing through the center of mass of the body. A similarity transformation per-

#With an eye to future applications, components relative to these axes will be denoted by subscripts
1,2,3.
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formed by a rotation matrix R can be chosen such that
Ip =RIR. (5.28)

This rotation can be expressed in terms of the Euler angles ¢, 8, and v as shown
in Eqs. (4.46) and (4.47). A proper choice of these angles will transform F into its
diagonal form

I, 0 0
Iib=]|0 I 0 (5.29)
0 0 &L

where I3, I3, and I3, which are the eigenvalues of |, are referred to as the com-
ponents of the principal moment of inertia tensor. The directions of x’, y’, and
7’ defined by the rotation matrix in Eq. (5.28) are called the principal axes, or
eigenvectors of the inertia tensor. These eigenvectors lie along the directions x’,
y’,and 7',

Once the principal moments and their directions relative to the surface of a
body are known, the inertia tensor relative to any other set of axis through the
center of mass can be found by a similarity transformation defined by the Euler
angles relating the two coordinate systems. If S is that transformation, then

1= SIpS, (5.30)

gives the moment of inertia in that frame. Equation (5.21) can then be used to
transform the rotation center to any desired location. The principal values of I can
be determined by the methods of matrix algebra.

The three principal values of the moment of inertia tensor in Eq. (5.29) can be
found by solving the cubic equation for | that arises from the determinant

Ixx -1 Ixy sz
Ly ILy—-1 I =0, (5.31)
sz ]yz Izz =1

where the symmetry of | has been displayed explicitly. Equation (5.31) is the sec-
nlar equation, whose three roots are the desired principal moments. For each of
these roots, Egs. (5.28) can be solved to obtain the direction of the corresponding
principal axis. In most of the easily soluble problems in rigid dynamics, the prin-
cipal axes can be determined by inspection. For example, we often have to deal
with rigid bodies that are solids of revolution about some axis, with the origin of
the body system on the synunetry axis. All directions perpendicular 10 the axis of
symmetry are then alike, which is the mark of a double root to the secular equa-
tion. The principal axes are then the symmetry axis and any two perpendicular
axes in the plane normal to the symmetry axis.

The principal moments of inertia cannot be negative, because as the diagonal
elements in the principal axes system they have the form of sums of squares. Thus.
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I, is given by (cf. Eq. (5.6))
iy = mz(ylz +Z%).

For one of the principal moments to vanish, all points of the body must be such
that two coordinates of each particle are zero. Clearly this can happen only if all
points of the body are collinear with the principal axis corresponding to the zero
principal moment. Any two axes perpendicular to the line of the body will then
be the other principal axes. Indeed, this is clearly a limiting case of a body with
an axis of symmetry passing through the origin.

We can also understand the concept of principal axes through some geometri-
cal considerations that historically formed the first approach to the subject. The
moment of inertia about a given axis has been defined as 7/ = n+ | - n. Let the
direction cosines of the axis be a, 8. and y so that

n=cai+Bj+ vk
I then can be written as
I = I0% + Iy B2 + Igy? + 20050 + 21,y + 215y e, (5.32)

using the symmetry of | explicitly. It is convenient to define a vector p by the
equation

p= (533)

5

The magnitude of p is thus related to the moment of inertia about the axis whose
direction is given by n. In terms of the components of this new vector, Eq. (5.32)
takes on the form

1= Ixxpf + ])yP% + Izng + 2Ly 0102 + 21y 0203 — 21 p3p01. (5.34)

Considered as a function of the three variables pj, 02, 03, Eq. (5.34) is the
equation of some surface in p space. In particular, Eq. (5.34) is the equation of an
ellipsoid designated as the inertial ellipsoid. We can always transform to a set of
Cartesian axes in which the equation of an ellipsoid takes on 1ts normal form:

2 2 2
L=10p1+hp's+ Iap : (5.35)

with the principal axes of the ellipsoid along the new coordinate axes. But (5.35)
is simply the form Eq. (5.34) has in a system of coordinates in which the inertia
tensat | is diagonal. Hence, the coordinate transformation that puts the cquation
of ellipsoid 1nto its normal form is exactly the principal axis transformation pre-
viously discussed. The principal moments of inertia determine the lengths of the
axes of the inertia ellipsoid. If two of the roots of the secular equation are equal,
the inertia ellipsoid thus has two equal axes and is an ellipsoid of revolution. If all
three principal moments are equal, the inertia ellipsoid is a sphere.
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A quantity closely related to the moment of inertia is the radius of gyration,
Ry, defined by the equation

1 =MRZ. (5.36)

In terms of the radius of gyration, the vector p can be written as

n
P Rl

The radius vector to a point on the inertia ellipsoid is thus inversely proportional
to the radius of gyration about the direction of the vector.

It is worth reemphasizing that the inertia tensor | and all the quantities associ-
ated with it—principal axes, principal moments, inertia ellipsoid, etc.—are only
relative to some particular point fixed in the body. If the point is shifted elsewhere
in the body, all the quantities will in general be changed. Thus, Eq. (5.21) gives
the effect of moving the reference point from the center of mass to some other
point. The principal axis transformation that diagonalizes I’ at the center of mass
will not necessarily diagonalize | about another axis, and hence is not in general
the principal axis transformation for the shifted tensor I. Only if the shift vector
R is along one of the principal axes relative to the center of mass will the differ-
ence tensor be diagonal in that system. The new inertia tensor I will in that special
case have the same principal axes as at the cente: of mass. However, the principal
moments of inertia are changed, except for that corresponding to the shift axis,
where the diagonal element of the difference tensor is clearly zero. The “paral-
lel axis” theorem for the diagonalized form of the inertia tensor thus has a rather
specialized and restricted form.

SOLVING RIGID BODY PROBLEMS AND
THE EULER EQUATIONS OF MOTION

Practically all the tools necessary for setting up and solving problems in rigid
body dynamics have by now been assembled. If nonholonomic constraints are
present, then special means must be taken to include the effects of these con-
straints in the equations of motion. For example, if there are “rolling constraints,”
these must be introduced into the equations of motion by the method of Lagrange
undetermined multipliers, as in Section 2.4. As discussed in Section 5.1, we usu-
ally seek a particular reference point in the body such that the problem can be
split into two separate parts, one purely translational and the other purely rota-
tional about the reference point. Of course, 1If one point of the rigid body 1s fixed
in an inertial system, then that is the obvious reference point. All that has to be
considered then is the rotational problem about the fixed point.

For bodies without a fixed point, the most useful reference point is almost
always the center of mass. We have already seen that the total kinetic energy and
angular momentum then split neatly into one term relating to the translational
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raotion of the center of mass and another involving rotation abour the center of
mass. Thus, Eq. (1.31) can now be written

T = %Mv2 + %Iwz.

For many problems (certainly all those that will be considered here), a similar
sort of division can be made for the potential energy. We can then solve individu-
ally for the translational motion of the center of mass and for the rotational motion
about the center of mass. For example, the Newtonian equations of motion can be
used directly: Eq. (1.22) for the motion of the center of mass and Eq. (1.26) for
the motion about that point.

With holonomic conservative systems, the Lagrangian formulation is available,
with the Lagrangian taking the form

Lig, q) = L.(gc, 4c) + Lo(gn, gp).

Here L, is that part of the Lagrangian involving the generzlized coordinates g,
(and velocities ) of the center of mass, and Lj the part relating to the orienta-
tion of the body about the center of mass, as described by gy, 4». In effect then,
there are two distinct problems, one with Lagrangian L. and the other with La-
grangian L.

In hoth the Newtonian and Lagrangian formulations, it is convenient to work
in terms of the principal axes system of the point of reference, so that the kinetic
energy of rotation takes the simple form given in Eq. (5.26). So far, the only
suitable generalized coordinates we have for the rotational motion of the rigid
body are the Euler angles. Of course, the motion is often effectively confined to
two dimensions, as in the motion of a rigid lamina in a plane. The axis of rotation
is then fixed in the direction perpendicular to the plane; only one angle of rotation
is necessary and we may dispense with the cumbersome machinery of the Euler
angles.

For the rotational motion about a fixed point or the center of mass, the direct
Newtonian approach leads to a set of equations known as Euler’s equations of
motion. We consider either an inertial frame whose origin is at the fixed point of
the rigad body, or a system of space axes with origin at the center of mass. In these
two sitnations, Eq. (1.26) holds, which here appears simply as

dL
(_) - N.
dt ),

The subscript s is used because the time derivative is with respect to axes that do
not share the rotation of the body. However, Eq. (4.86) can be used to obtain the
derivatives with respect to axes fixed in the body:

ﬂ'—' —(é—l-f) +wxL
dt), \at}, ’
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or, by dropping the “body” subscript:

% +@xL=N, (537)

Equation (5.37) is thus the appropriate form of the Newtonian equation of motion
relative to body axes. The ith component of Eq. (5.37) can be written

dL
—— + e Ly =N, (5.38)
dt
If now the budy axes ate taken as the principal axes 1elative (0 the reference
point, then the angular momentum components are L; = [,w,. By Eq. (5.25),
Eq. (5 38) takes the form (no summation on ;*)
do,
], _d—tl_ + Eljkw_]a)klk =N, (5.39)

since the principal moments of inertia are of course time independent. In expanded
form, the three equations making up Eq. (5.39) look like

hoy — w3l — I3) = N,
han —wwi(lz— ) = Na (5.399
Ran —wen(l) — ) = Ns.

Equations (5.39) or (5.39") are Euler’s equations of motion for a rigid body
with one point fixed. They can also be derived from Lagrange’s equations in
the form of Eq. (1.53) where the generalized forces Q; are the torques, ¥,
corresponding to the Euler angles of rotation. However, only one of the Euler
angles has its associated torque along onc of the body axes, and the remaimng
two Euler’s equations must be obtained by cyclic permutation (cf. Derivation 4).

Consider the case where I} = I, # I3. A torque with components Ny or N
will cause both w; and w; to change without affecting w3. We shall return to a
discussion of this in Section 5.7 when we consider the heavy symmetric top with
one point fixed. Let us first consider the torque-free motion of a rigid body.

TORQUE-FREE MOTION OF A RIGID BODY

One problem in rigid dynamics where Eulet’s equations are applicable is in the
motion of a rigid body not subject to any net forces or torques. The center of mass
is then cither at rest of moving uniformly, and it does not decreasc the generality
of the solution to discuss the rotational motion in a reference frame in which the
center of mass is stationary. In such a case, the angular momentum arises only
from rotation about the center of mass, and Euler’s equations are the equations of

*It should be obvious that Eq (3.39), as the :th component of a vector equation, does not involve a
summation over z, although summation s implied over the repeated indices f and k.
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motion for the complete system. In the absence of any net torques, they reduce to

Iy = anws(lr — I3)
bhay = wson (I3 — §) (5.40)

hos = wiw (1 — D).

The same equations, of course, will also describe the motion of a rigid body
when one point is fixed and there are no net applied torques. We know two im-
mediate integrals of the motion, for both the kinetic energy and the total angular
momentum vector must be constant in time. With these two mtegrals 1t 1 possible
to integrate (5.40) completely in terms of elliptic functions, but such a treatment is
not very illuminating. However, it is also possible to derive an elegant geometri-
cal description of the motion, known as Poinsot’s construction, without requiring
a complete solution to the problem.

Let us consider a coordinate system oriented along the principal axes of the
body but whose axes measure the components of a vector p along the instanta-
neous axis of rotation as defined by Eq. (5.33). For our purposes, it is convenient
to make use of Eq. (5.17) for the kinetic energy (here constant) and write the
definition of p in the form

(] w
—_ — L e— 5.41
b= O41)
In this p space, we define a function
Fp)y=p-l.p=p2l, (5.42)

where the surfaces of constant F are ellipsoids, the particular surface F = 1 being
the inertia ellipsoid. As the direction of the axis of rotation changes in time. the
parallel vector p moves accordingly, its tip always defining a point on the inertia
ellipsoid. The gradient of F, evaluated at this point, furnishes the direction of
the corresponding normal to the inertia ellipsoid. From Eq. (5.42) for F(p). the
gradient of F with respect to p has the form

21-w

VpF=2l-p= -TZ_F,

2
V,F =,/ =L. 5.4
pF = T (5.43)

Thus. the e vector will always move such that the corresponding normal to the
inertia ellipsoid is in the direction of the angnlar momentum. In the particular case
under discussion, the direction of L is fixed in space, and it is the inertia ellipsoid
(fixed with respect to the body) that must move in space in order to preserve this
connection between w and L (cf. Fig. 5.4).

or
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Inertia elipsoid

Invanable
plane

Herpolhode

L

FIGURE 54 The motion of the nertia ellipsoid relative to the invariable plane.

It can also be shown that the distance between the origin of the ellipsoid and the
plane tangent to it at the point p must similarly be constant in time, This distance
is equal to the projection of p on L and is given by

p . L _ () X IJ
L 2T
or
. 2T
& = i (5.44)
L L

where use has been made of Eq. (5.16). Both 7', the kinetic energy, and L, the
angular momentum, are constants of the motion, and the tangent plane is therefore
always 1 fixed distance from the origin of the ellipsoid. Since the normal to the
plane, being along L, also has a fixed direction, the tangent plane is known as
the invariahle plane. We can picture the force-free motion of the rigid body as
being such that the inertia ellipsoid rolls, without slipping, on the invariable plane,
with the center of the ellipsoid a constant height above the plane. The 1olling
occurs without slipping because the point of contact is defined by the position of
P, which, being along the instantaneous axis of rotation, is the one directior in
the body momentarily at rest. The curve traced out by the point of contact on the
inertia ellipsoid is known as the polhode, while the similar curve on the invariable
plane is called the herpolhode.*

Poinsot’s gecomectrical discussion is quite adequate to desciibe completely the
force-free motion of the body. The direction of the invariable plane and the height
of the inertia ellipsoid above it are determined by the values of 7" and L, which
are among the initial conditions of the problem. It is then a matter of geometry to

*Hence. the jabberwockian-soundmg statement: the polhode rolls without shpping on the herpolhode
tying 1n the nvariable plane.
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trace out the polhode and the herpolhode.* The direction of the angular velocity
in space is given by the direction of p, while the instantaneous orientation of the
body is provided by the orientation of the inertia ellipsoid, which is fixed in the
body. Many elaborate descriptions of force-free motion obtained in this fashion
can be found in the literature.

In the special case of a symmetrical body, the inertia ellipsoid is an ellipsoid
of revolution, so that the polhode on the ellipsoid is clearly a circle about the
symmetry axis. The herpolhode on the invariable plane is likewise a circle. An
observer fixed in the body sees the angular velocity vector @ move on the surface
of a cone—called the body cone—whose intersection with the inertia ellipsoid is
the polhode. Correspondingly, an observer fixed in the space axes sees @ move
on the surface of a space cone whose intersection with the invariable plane is the
herpolhode. Thus, the free motion of the symmetrical rigid body is sometimes
described as the rolling of the body cone on the space cone. If the moment of
inertia about the symmetry axis is less than that about the other two principal
axes. then from Eq. (5.35) the inertia ellipsoid is prolate, i.e., football shaped—
somewhat as is shown in Fig. 5.4. In that case, the body cone is outside the space
cone. When the moment of inertia about the syminetry axis is the greater, the
ellipsoid is oblate and the body cone rolls around the inside of the space cone.
In either case, the physical description of the motion is that the direction of @
precesses in time about the axis of symmetry of the body.

The Poinsot construction shows how « moves, but gives no information as to
how the L vector appears to move in the body system of axes. Another geomet-
rical description is available however to describe the path of the L vector as seen
by an observer in the principal axes system. Equations (5.25) and (5.26) imply
that 1n this system the kinetic energy is related to the components of the angular

momentum by the equation
L + Li L (5.45
= —= 4 =4 —=, 5.
2y 20 + 253 )

Since T is constant, this relation defines an ellipsoid, referred to as the Binet
ellipsoid, also fixed in the body axes but nor the same as the inertia ellipsoid.
If we adopt the convention

Lh<h=<h,
and write the equations for the ellipsoid in the standard form

2
L Ly L

2T + 2T I + 2T I ( )

then we see that the ellipsoid sketched on Fig. 5.5a has semimajor axes, in order
of decreasing size, of /2T I}, +/2T I, and /2T I5. The conservation of the total

*The herpolhode 15 always concave to the origin, belying its name, which means “snakelike.”
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angular momentum, L, gives us

L2+ L2412
—*—L;—f =1. (5.46)

the equation for a sphere in L, Ly L, space. The vector L. moves in such a way that
it describes a path on both the ellipsoid of Eq. (5.45) and the sphere of Eq. (5.46).
In other words, the path of L is the intersection of the ellipsoid and the sphere.
The components L satisfy the equation

2 2 2 2
L} 4 Ly + L] _LitL+L
2TH  2TI,  2Th L? '

It is easy to show that these two surfaces will intersect for values of L larger
than the ellipsoid semiminor axis and less than the semimajor axis, that is,

V2T < L < /2TH.

The sphere is outside the ellipsoid on the L, axis and inside the ellipsoid along
L. Figure 5.5 depicts curves where the sphere intersects the ellipsoid for various
values of L. Fig. 5.5a shows a perspective view and Fig. 5.5b shows the view
as seen from the L, axis. The curves that appear as straight lmes on Fig 5.5b
correspond to the case where L = /2T I,.

With the help of this geometrical construction, something can be said about the
possible motions of a free asymmetric body. It is easy to see that a steady rotation

(a) (b}

FIGURE 5.5 (a) The kinetic energy, or Binet, ellipsoid fixed in the body axes, and some
possible paths of the L vector in its surface. (b) Side view of Binet ellipsoid.



5.6 Torque-free Motion of a Rigid Body 205

of such a body is possible only about one of the principal axes. From the Euler
equations (5.40), all the components of  can be constant only if

wran(ly  I2) = wrws(lr — ) = wzen (I3 — 1) — 0,

which requires that at least two of the components w, be zero; i.e., @ is along
only one of the principal axes. However, not all of these possible motions are
stable—that is, not moving far from the principal axis under small perturbation.
For example, steady motion about the L, axis will occur when L? =2TI5. When
there are slight deviations {rom this condition, the radius of the angular momen-
tum sphere is just slightly smaller than this value, and the intersection with the
kinetic energy ellipsoid is a small circle about the L, axis. The motion is thus
stable, the L vector never being far from the axis.

Similarly, at the other extreme, when the motion about the axis of smallest 7 is
perturbed, the radius of the angular momentum sphere is just slightly larger than
the smallest semimajor axis. The intersection is again a small closed figure around
the principal axis, and the motion is stable. However, the motion about the inter-
mediate axis 15 unstable. This is clearly shown in Fig. 5.5. For the intermediate
(L, ) axis, the kimnetic energy has two orbits that encircle :he ellipsoid and cross
each other where the L pass through the ellipsoid. Hence, there are two differ-
ent orbits with values slightly less than /2T I and two other distinctly different
orbits with values slightly exceeding +/2T Iz, ali four of which have quite long
paths on the surface.

This behavior can be best understood by recognizing that at the intermediate
axis the radius of curvature of the ellipsoid in one direction is greater than that
of the contact sphere, and less in the perpendicular direction. At the other two
extremes, the radii of curvature are either greater or smaller than the sphere radius
in all directions. These conclusions on the stability of free-body motion have been
known for a long time. but applications, e.g., to the stability of spinning space-
craft, have brought them out of the obscurity of old monographs on rigid body
dynamics.™

For a symmetrical rigid body, the analytical solution for the force-free mo-
tion is not difficult to obtain, and we can directly confirm the precessing motion
predicted by the Poinsot construction. Let the symmetry axis be taken as the L,
principal axis so that /; = I». Euler’s equations (5.40) reduce then to

#If there are dissipative mechanisms present, these stability arguments have lo be modified. It is easy
10 see that for a body with constant L, but slowly decreasmg T, the only stable votation is about the
principal axis with the largest moment of inertia The Kinetic energy of rotation about the ith principal
axis forgiven L1s T = L2721, which is least for the axis with the largest 7. If a body is set spinning
about any other principal axis, the effect of a slowly decreasing kinetic energy 1s to cause the angular
velocity vector Lo shift until the spmming 15 about the axis requinng the least value of T for the given
L Such dissipative effects are present in spacecraft because of the flexing of various members m the
coursc of the motion, especially of the long booms carmed by many of them Thesc facts were learned
the hard way by the edrly designers of spacecraft'
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Loy = (I — BYanw;
hap = (h — R)wzw 547

[zas = 0.

The last of these equations states that w; is a constant, and it can therefore be
treated as one of the known initial conditions of the problem. The remaining two
equations can now be written

oy = —Qoy, w2 = Qwi, (5.48)
where  is an angular frequency

_ -5

Q
I

(549)

Elimination of «; between Eqs. (5.48) leads to the standard diffeiential equation
for simple harmonic motion

631 = _gzwls
with the typical solution
wy) = A cos 1.

The corresponding solution for w; can be found by substituting this expression
for wy, back in the first of Egs. (5.48):

wr = Asin §2t.

The solutions for w) and w; show that the vector w1i + w»} has a constant magni-
tude and rotates uniformly about the z axis of the body with the angular frequency
£2 (ct. Fig. 5.6). Hence, -he total angular velocity @ is also constant in magnitude
and precesses about the z axis with the same frequency, exactly as predicted by
the Poinsot construction. * Recall that the precession described here is relative to
the body axes, which are themselves rotating in space with the larger frequency
. From Eq. (5.49), it is seen that the closer 11 is to I3. the slower will be the
precession frequency §2 compared to the rotation frequency w. The constants A
(the amplitude of the precession) and w3 can be evaluated in terms of the more
usual constants of the motion, namely, the kinetic energy and the magnitude of
the angular momentum Both 7 and L2 can be written as functions of A and w3

*The precession can be demorstrated i another fashion by defiming 4 vector €2 lying along the z axis
with magnitude given by (5 49) Equations (5 47) are then essentially equivalent to the vector equasion

o=wx{)

which 1mmediately reveals the precession of @ with the frequency 2.



5.6 Torque-free Motion of a Rigid Body 207

FIGURE 5.6 Precession of the angular velocity about the axis of symmetry in the force-
free motion of a symmetncal rigid body.

T = %IlAz + -]2-130)_%,
L*=124% + 1202,

and these relations in turn may be solved for A and w3 in terms of T and L.

We would expect that Earth’s axis of rotation should exhibit this precession, for
the external torques acting on Earth are so weak that the rotational motion may be
considered as that of a free body. Earth is approximately symmetrical about the
polar axis and slightly flattened at the poles so that /i is less than 3. Numerically,
the ratio of the moments is such that

L—1
1

= (0.00327,

and the magnitude of the precession angular frequency should therefore be

Q= B 98
T 305.81039 306

Since ws is practically the same as the magnitude of e, this result predicts
a period of precession of approximately 306 days or about 10 months. If some
circumstance disturbed the axis of rotation from the figure axis of Earth, we would
therefore expect the axis of rotation to precess around the figure axis (i.e., around
the north pole) once every 10 months. Practically, such a motion should show up
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as a periodic change in the apparent latitude of points on Earth’s surface. Careful
measurements of latitude at a network of locations around the world, carried out
now for about a century, show that the rotation axis is indeed moving about the
pole with an amplitude of the order of a few tenths of a second of latitude (about
10 m). But the situation is far more complicated (and interesting) than the above
simple analysis would suggest.

The deviations between the figure and rotation axes are very irregular so that
it’s more a “wobble” than a precession. Careful frequency analysis shows the
existence of an annual period in the motion, thought to arise from the annual
cycle of seasons and the corresponding mean displacement of atmospheric masses
about the globe. Additionally, a strong frequency component is centered about a
period of 420 days, known as the Chandler wobble. The present belief is that this
motion represents the free-body precession derived above. It is thought that the
difference in period arises from the fact that Earth is not a rigid body but is to
some degree elastic. In effect, some part of Earth follows along with the shift 1n
the rotation axis, which has the effect of reducing the difference in the principal
moments of inertia and therefore increasing the period. (If, for example, Earth
were completely fluid, then the figure ax:s would instantaneously adjust to the
rotation axis and there could be no precession.)

There are still other obscure features to the observed wobble. The frequency
analysis indicates strong damping effects are present, believed to arise from either
tidal friction or dissipative effects in the coupling between the mantle and the core.
The damping period ought to be on the order of 10-20 years. But no such decay
of the amplitude of the Chandler wobble has been observed; some sort of ran-
dom excitation must be present to keep the wobble going. Various sources of the
excitation have been suggested. Present speculation points to deep earthquakes,
or the mantle phenomena underlying them, as possibly producing discontinuous
changes in the inertia tensor large enough to keep exciting the free-body preces-
sion.*

THE HEAVY SYMMETRICAL TOP WITH ONE POINT FIXED

As a further and more complicated example of the application of the methods
of rigid dynamics, let us consider the motion of a symmetrical body in a uni-
form gravitational field when one point on the symmetry axis is fixed in space. A
wide variety of physical systems, ranging from a child’s top to complicated gyro-
scopic navigational instruments, are approximated by such a heavy symmetrical
top. Both for its practical applications and as an illustration of many of the tech-

*The tre precession of Earth’s axis 18 not to be confused with sts slow precession about the normal
to the ecliptic This astronomecal precession of the equinoxes is due to the gravitational 1orques of
the Sun and Moon, which werc considered negligible in the above discussicn. That the assumption is
justified 1s shown by the long period of the precessien of the equinoxes (26,000 ycars) compared to
a period of roughly one year for the force-free precession The astronomical precession 1s discussed
(urther below
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Verlical

@
i Line of nodes

FIGURE 5.7 Euler’s angles specifying the orientation of a symmetrical top.

niques previously developed. the motion of the heavy symmetrical top deserves a
detailed exposition.

The symmetry axis is of course one of the principal axes and will be chosen as
the z axis of the coordinate system fixed in the body.* Since one point is stationary,
the configuration of the top is completely specified by the three Euler angles: 6
gives the inclination of the z axis from the vertical, ¢ measures the azimuth of the
top about the vertical, while ¥ is the rotation angle of the top about its own z axis
(cf. Fig. 5.7). The distance of the center of gravity (located on the symmetry axis)
from the fixed point will be denoted by /

The rate of change of these three angles give the characteristic motions of the
top as

W = rotation of the top about its own figure axis, z
¢ = precession or rotation of the figure axis z about the vertical axis 7’

6 = nutation or bobbing up and down of the z figure axis relative to the verti-
cal space axis 7.

Eor many cases of interest such as the wp and the gyioscope, we have ¢r > 0>
¢. Since I} = I, # I, Euler’s equations (5.39") become

*Qnly the body axes need specific 1denuficaton here, it will therefore be convenient to designate

them ia this section as the xyz axes, without fear of confusing them witt the space axes, whuch will

be designated by the x'y'z’ axes
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Loy + wawz(l3 — I)) = Ny,
han 4+ wyw3(ly — 3) = N»,

and
o = Na.

Let us consider the case where initially N3 = 0 = Ny, N1 # 0, and w; =
w2 = 0, w3 # 0, then w3 will be constant. The torque N will cause ) to change
since w; # (. Since w; is no longer zero, the second equation requires that w;
begin to change also. What this means in terms of an observation is not obvious.
We observe the changes in the Euler angles ¥, ¢, 0 and their associated angles
in the x’, y’, z’ laboratory frame rather than the @, @, @3 and their associated
angles in the principal axis system. This suggests that the Euler equations may
not provide the most useful description of the motion.

The Lagrangian procedure, rather than Euler’s equations, will be used to obtain
2 solution for the motion of the top. Since the body is symmetrical, the kinetic
energy can be written as

T = i} + @) + i o3,
or, in terms of Euler’s angles, and using Eqs. (4.87), as

T = 2+ §sin6) + 2 +dooser? (5.50)

where the @, § cross terms in a)]z and a)% cancel.

It is a2 well-known elementary theorem that in a constant gravitational field the
potential energy is the same as if the body were concentrated at the center of mass.
We will however give a bnef formal proot here. The potential energy of the body
is the sum over all the particles:

V=-mr-g,

where g is the constant vector for the acceleration of gravity. By Eq. (1.21), defin-
ing the center of mass, this 18 equivalent to

V==-MR-.g (5.51)
which proves the theorem. In terms of the Euler angles,
V = Mglcos9, (5.319)

so that the Lagrangian is

L o L. .
L= 5‘(92 + ¢ sin® 6) + 531(1/; +deos8)? — Mgl cosé. (5.52)
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Note that ¢ and 1 do not appear explicitly in the Lagrangian; they are therefore
cyclic coordinates, indicating that the corresponding generalized momenta are
constant in time. Now, we have seen that the momentum conjugate to a rotation
angle is the component of the total angular momentum along the axis of rotation,
which for ¢ is the vertical axis, and for i, the z axis in the body. We can in fact
show from elementary principles that these components of the angular momentum
must be constant in tune. Since the torque of gravity is along the line of nodes,
there s no component of the torque along either the vertical or the body z axis,
for by definition both of these axes are perpendicular to the line of nodes. Hence,
the components of (he angular momentum along these two axes must be constant
in time.

We therefore have two immediate first integrals of the motion:

aL s
Py = ﬁ = L(f + ¢cosh) = Ly = Na (5.53)
and

aL , .
by = % = (L sin*0+ 13 c0529)¢ + I3y cosd = I1b. (5.54)

Here the two constants of the motion are expressed in terms of new constants a
and b. There is one further first integral available; since the system is conservative,
the total energy E is constant in time:

oo . i
E=T+V= —21(92 + ¢ sin20) + gwg 4+ Mglcosf.  (555)

Only three additional quadratures are needed to solve the problem, and they are
easily obtained from these three first integrals without directly using the Lagrange
equations. From Eq. (5.53), ¥ is given in terms of ¢ by

I = ha — Iy cos b, (5.56)
and this result can be substituted in (5.54) to eliminate :
Ligsin®6 + Lacos® = I1b,

or

. b—acost
= 5.57
¢ sin% @ -7
Thus, if # were known as a function of time, Eq. (5.57) could be integrated to
furnish the dependence of ¢ on time. Sub_stituting Eq. (5.57) back in Eq. (5.56)
results in a corresponding expression for ¥:
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1/'1—_-1——-0089—'———. (558)

which furnishes ¢ if 8 is known. Finally, Egs. (5.57) and (5.58) can be used to
eliminate ¢ and v from the energy equation, resulting in a differential equation
involving 6 alone.

First notice that Eq. (5.53) says w3 is constant in time and equal to (I1/15)a.
Therefore, E— I;w% /2 is a constant of the motion, which we shall designate as E’.
Making use of Eq. (5.57), the energy equation can thus be written as

e 16> I (b—acosb)?
2 2 sin? 0

+ Mglcosh. (5.59)

Equation (5.59) has the form of an equivalent one-dimensional problem in the
variable 8, with the effective potential V/(@) given by
I, (b—acosf\>
V'(9) = Mglcosf + = [ 2227 ) (5.60)
2 sinf
Thus, we have four constants associated with the motion, the two angular mo-
menta py and pg, the energy term E — %13503. and the potential energy term
Mgl. It is common to define four normalized constants of the motion as

2
I
2Mgl
g=228 (5.61)
I;
v
a= 1
b=22
Iy
In terms of these constants, the energy equation (5.55) can be written as
2, (b—acos6)?
o= g2y G acostr + Bcosé. (5.62)

sin® g

We will use this one-dimensional problem to discuss the motion in 8, very
similarly to what was done in Section 3.3 in describing the radial motion for the
central force problem. It is mote convenient to change variables as we did for the
central force problem. Using the variable u = cos 0, rewrite Eq. (5.62) as

i = (1) (o — pu) — (b — au)?, (5.62')

which can be reduced immediately to a quadrature:
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u() du
t = [ . (5.63)
(0 V(1 —ul) e — Bu) — (b — au)?

With this result, and Eqs. (5.57) and (5.58), ¢ and ¥ can also be reduced to
quadratures. However, the polynomial in the radical is a cubic so that we have to
deal with elliptic integrals. These solutions can be generated on current desk-top
computers. In the case of the force-free motion, the physics tends to be obscured
in the profusion of mathematics. Fortunately, the general nature of the motion can
be discovered without actually performing the integrations.

Before proceeding wath the study of the possible solutions ot Eq. (5.63), & few
comments on the constants defined in Egs. (5.61) will be useful. Figure 5.7 shows
the case where the fixed point is not at the center of mass. If the top is spinning on
a horizontal surface, both & and 8 are greater than zero. If the top is supported by
a stand that allows it to dip below horizontal, 8 is still larger than zero, but o could
be positive or negative. Another common application is the gyroscope where the
center ot mass 1s the fixed point. In terms of Fig. 5.7, « is the energy in the system
excluding the x3 angular kinetic energy. For the gyroscope, 8 = 0 and & > 0.
We shall restrict our attention to situations in which the rotational kinetic energy
about the x3 axis is much larger than the kinetic energy about the other two axes.

It is convenient to designate the right-hand side of Eq. (5.62') as a function
S (u) and discuss the behavior of the cubic equation

fuw) = fu® — (¢ + a®u?® + (2ab — Bu + (o — b?).

For the gyroscope, f (1) is only a quadratic equation since £ = 0, while for the top
the full cubic equation must be considered. Since many of the applications of the
gyroscope use torque-free mountings, piecession and nutations are suppressed 50
the gyroscope motions are trivial. To understand the general motions of a spinning
body. we will consider only cases where 8 > 0.

The roots of the cubic polynomial furnish the angles at which 6 changes sign,
that is, the “turning angles” in 6. Knowing these angles will give qualitative in-
formation about the motion. There are three roots to a cubic equation and three
possible combinations of solutions. There can be one real root and a complex
conjugate pair of roots; there can be three real roots, two of which are equal; and
there can be three real and unequal roots. These possibilities depend upon the rel-
ative signs and magnitudes of the four constants in Egs. (5.61). There is also the
physical constraint that the solution u must satisfy —1 < u < 1. We will draw all
figures as if u > 0, which would be the case if the top is supported by a horizontal
surface. Recall that a point support could allow the smallest root to be less than
Zero.

For u large, the dominant term in f(x) is Bu>. Since B (cf. Egs. (5.61)) is
always a positive constant f(u) is positive for large positive » and negative for
large negative u. At points u = 1, f(x) becomes equa. to —(b F @)? and is
therefore always negative, except for the unusual case where u = %1 is 4 root
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)

FIGURE 5.8 [llustrating the location of the turning angles of @ in the motion of a heavy
symmetric top supported on a horizontal plane. A point support could allow one of the
roots to be negative.

(corresponding to a vertical top). Hence, at least one root must lie in the region
u > |, a region that does not correspond to real angles. Indeed, physical motion
of the top can occur only when u? is positive somewhere in the interval between
u = —1and u = -1, that is, 8 between 0 and +m. We must conclude theretore
that for any actual top f (i) will have two roots, #1 and u,, between —1 and 41
(cf. Fig. 5.8), and that the top moves such that cos # always remains between these
two roots, The location of these roots, and the behavior of ¢ and ¥ for values of 8
between them, provide much qualitative information about the motion of the top.

It is customary to depict the motion of the top by tracing the curve of the in-
tersection of the figure axis on a sphere of umit radius about the fixed point. This
curve is known as the locus of the figure axis. The polar coordinates of a point on
the locus are identical with the Euler angles 6, ¢ for the body system. From the
discussion in the preceding paragraph, we can see that the locus lies between the
two bounding circles of colatitude 8, = arccos #; and 8; = arccos ua, with 8 van-
ishing at both circles. The shape of the locus curve is in large measure determined
by the value of the root ot # — au, which we denote by u';

W=2 (564)

Suppose, for example, the initial conditions are such that u’ is larger than us.
Then, hy Bq (5 57), ¢ will always have the same sign for the allowed inclination
angles between 8) and 6;. Hence, the locus of the figure axis must be tangent to
the bounding circles in such a manner that ¢ is in the same direction at both 8,
and 64, as is shown in Fig. 5.9(a). Since ¢ therefore increases secularly in one
direction or the other, the axis of the top may be said to precess about the vertical
axis. But it is not the regular precession encountered in force-free motion, for as
the figure axis goes around, it nods up and down between the bounding anglcs &,
and #;—the top nutates during the precession.

Should &/a be such that u’ lies between u; and u,, the direction of the preces-
sion will be different at the two bounding circles, and the locus of the figure axis
exhibits loops, as shown in Fig. 5.9(b). The average of ¢ will not vanish how-
ever so that there is always a net precession in one direction or the other. It can
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() (b) ©)
FIGURE 5.9 The possible shapes for the locus of the figure axis on the unit sphere.

also happen that #’ coincides with one of the roots of f(u). At the corresponding
hounding circles, both é and ¢ must then vanish, which requires that the locus
have cusps touching the circle, as shown in Fig. 5.9(c).

This last case is not as exceptional as it sounds; it corresponds in fact to the
initial conditions usually stipulated in elementary discussions of tops: We assume
that initially the symmetrical top is spinning about its figure axis, which is fixed
in some direction 8. At time ¢ = 0, the figure axis is released and the problem is
to describe the subsequent motion. Explicitly, these initial conditions are that at
t=0,0 =0yandd = ¢ = 0. The quantity ug = cos 6y must therefore be one of
the roots of f(u); in fact, it corresponds to the upper circle:

wp=upy =u' = 2 (5.65)

a

For proof, note that with these initial conditions E’ is equal to Mgl cos 6, and
that the terms in E’ derived from the top’s kinetic energy can never be negative.
Hence. as 6 and ¢ begin to differ from their initial zero values, energy can be
conserved only by a decrease in Mgl cos 6, i.e., by an increase in 8. The initial 8y
is therefore the same as &;, the minimum value 8 can have. When released in this
manner, the fop always starts to fall, and continues to fall until the other bounding
angle &) is reached, precessing the meanwhile. The figure axis then begins to rise
again to 62, the complete motion being as shown in Fig. 5.9(c).

Some quantitative predictions can be made about the motion of the top un-
der these initial conditions of vanishing @ and ¢, provided that the initial kinetic
energy of rotation about the z-axis is assumed large compared to the maximum
change in potential energy:

j 1w} > 2Mgl. (5.66)

The effects of the gravitational torques, namely, the precession and accompanying
nutation, will then be only small perturbations on the dominant rotation of the top
about its figure axis. In this situation, we speak of the top as being a “fast top.”
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With this assumption we can obtain expressions for the extent of the nutation, the
nutation frequency, and the average frequency of precession.

The extent of the nutation under these given initial conditions is given by
uy — ug, where u is the other physical root of f(u). The initial conditions
E’ = Mgl cos 6y is equivalent to the equality

a = Bup.
With this relation, and the conditions of Eq. (5.65), f(u) can be rewritten more
simply as

f) = o —w) [BU = u?) — a*(uo — )| (5.67)

The roots of f(u) other than ug are given by the roots of the quadratic expression
in the brackets, and the desired root ; therefore satisfies the equation

2 a?
(1 —up)— F(uo —uy) =0 (5.68)
Denoting ug — u by x and uo — u; by x1, Eq. (5.68) can be rewritten as
x? + px; —q =0, (5.69)

where

a2
pP= F —2C0$9(). qg= Sin290-

The condition for a “fast” top, Eq. (5.66), implies that p is much larger thang.
This can be seen by writing the ratio a2/ as

a? . I3 I3a)§
8~ \I,)2Mgl’
Except in the case that /3 < I; (which would correspond to a top in the unusual

shape of a cigar), the ratio is much greater than vnity, and p > ¢. To first order
in the small quantity g/p, the only physically realizable root of Eq. (5.68) is then

q
x| = =-.

P

Neglecting 2 cos 8y compared to a2/, this result can be written

a2
siny I, 2Mgl

_ P ’“2 0= 1228 gin 6. (5.70)
a 13 13(»03

x)

Thus, the extent of the nutation, as measured by x; = ug — u), goes down as
1 /w%. The faster the top 1s spun, the less is the nutation.
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The frequency of nutation likewise can easily be found for the “fast” top. Since
the amount of nutation is small, the term (1 — u?) in Eq. (5.67) can be replaced by
its initial value, sin 8y. Equation (5.67) then reads, with the help of Eq. (5.70),

Fluw) = 3% = a*x(x1 — %).

If we shift the origin of x to the midpoint of its range, by changing variable to

y=x--,

2

then the differential equation becomes

)
2 2% 2
2 g2 {5 _ ,

5 (4 )

which on differentiation again reduces to the familiar equation for simple har-
monic motion

§=—a’y.

In view of the initial coudition x = 0 at ¢ = 0, the complete solution is
x= %(1 —~ cosar), (5.71)

where x) is given by (5.70). The angular frequency of nutation of the figure axis
between 8y and 6 is therefore

a= ", (5.72)

which increases the faster the top is spun nitially.
Finally, the angular velocity of precession, from (5.57), is given by

. _a{up—u) _ ax
sin” @ sin? @y

or, substituting Eqs. (5.72) and (5.70),
¢ = E(l —cosar). (5.73)
2a

The rate of precession is therefore not uniform but varies harmonically with time,
with the same frequency as the nutation. The average precession frequency how-
ever is

B Mgl

= , 5.74
2a s 374

¢ =
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which indicates that the rate of precession decreases as the initial rotational ve-
locity of the top is increased.

We are now in a position to present a complete picture of the motion of the fast
top when the figure axis initially has zero velocity. Immediately after the figure
axis is released, the initial motion of the top is always to fall under the influence of
gravity. But as it falls, the resultant torque around the axis of fall causes the top to
pick up a precession velocity, directly proportional to the extent of its fall, which
starts the figure axis moving sideways about the vertical. The initial fall results
in a periodic nutation of the figure axis in addition to the precession. As the top
is spun faster and faster, the extent of the nutation decreases rapidly, although
the frequency of nutation increases, while at the same time the precession about
the vertical becomes slower. In practice, for a sufficiently fast top the nutation is
damped out by the friction at the pivot and becomes unobservable. The top then
appears to precess uniformly about the vertical axis. Because the precession is
regular only in appearance, Klein and Sommerfeld have dubbed it a pseudoregular
precession. In most of the elementary discussions of precession, the phenomenon
of nutation is neglected As a consequence, such derivations seem to lead to the
paradoxical conclusion that upon release the top immediately begins to precess
uniformly, a motion that is normal to the forces of gravity that are the ultimate
cause of the precession. Our discussion of pseudoregular precession serves to
resolve the paradox; the precession builds up continuously from rest without any
infinite accelerations, and the initial tendency of the top is to move in the direction
of the forces of gravity.

It is of interest to determine exactly what initial conditions will result in a true
regular precession. In such a case, the angle 6 remains constant at its initial value
8o, which means that ), = 6, = 6. In other words, f(u) must have a double root
at ug (cf. Fig. 5.10), or

¢
f(“)=l.¢2=0, Z,—"'=0; U = uy.
4

The first of these conditions, from Eq. (5.62") with & = 0, implies

(b — aup)?

, (5.75)
1- u(z)

(& — Bupy) =

f@)

u=-1 u= +1

N . /
] T N Y-
/"0

FIGURE 5.10 Appearance of () for a regular pracession.
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the second corresponds to

8 _ a(b — aup) _uo(a — Buo)

9 = .2 _ 2
2 1 g 1 "e

(5.76)

Substijtution of Eq. (5.75) in Eq. (5.76) leads, in view of Eq. (5.57) for é, 102
quadratic equation for ¢:

g = ag — ¢* cos 6. (5.76")
With the definitions of 8 and a, Eq. (5.61), this can be written in two alternative
forms, depending on whether a is expressed in terms of w3 or the (constant)
and ¢

Mgl = ¢(Izas — 11 cos Bp), (577
or
Mgl = ¢(Isy — (11 — I)¢ cos ). (5.77)

The initial conditions for the problem of the heavy top require the specification
of8, ¢, v, 8, ¢, and, say, either ¥ or w3 atthe time ¢ = 0. Because they are cyclic,
the initial values of ¢ and ¢ are largely imrelevant, and in general we can choose
any desired value for each of the four others. But if in addition we require that the
motion of the figure axis be one of uniform precession without nutation, then our
choice of these four initial values is no longer completely unrestricted. Instead,
they must satisfy either of Eqs. (5.77). For # = 0, we may still choose initial
values of § and w3, almost arbatrarily, but the value ot ¢ 1s then determined. ‘T'he
phrase “almost arbitrarily” is used because Egs. (5.77) are quadratic, and for ¢ to
be real, the discriminant of Eq. (5.77) must be positive:

Bw? > 4Mgll, cos 6. (5.78)

For 8y > m/2 (a top mounted so its center of mass 15 below the fixed point), then
any value of w3 can lead fo uniform precession. But for 6y < 7 /2, w3 must be
chosen to be above a minimum value wg,

2 ——
w3 > Wy = ]—%\/Mglfl cos B (5.79)

to achieve the same situation. Similar conditions can be obtained from Eq. (5.77")
for the allowable values of ¥. As a result of the quadratic nature of Eq. (5.77),
there will in general be two solutions for ¢, known as the “fast” and “slow™ pre-
cession. Also note that (5.77) can never be satisfied by ¢ = 0 for finite 1,lr or w3;
to obtain uniform precession, we must always give the top a shove to start it on its
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way. Without this correct initial precessional velocity, we can obtain at best only
a pseudoregular precession.
1f the precession is slow, so that ¢ cos 7y may be neglected compared to a, then
an approximate solution for ¢ is
Mgl
P ]_g (slow),

o= 2a
which agrees with the average rate of pseudoregular precession for a fast top. This
tesult is to be expected of course; if the rate of precession is slow, there is little
difference between starting the gyioscope off with a little shove or with no shove
at all. Note that with this value of ¢, the neglect of ¢ cosfly compared to a is
equivalent to requiring that w3 be much greater than the minimum allowed value.
For such large values of w3, the “fast” precession 1s obtained when ¢ is so large
that Mgl is small compared to the other terms in Eq. (5.77):

p=—2" (fast).

The fast precession is independent of the gravitational torques and can in fact be
related to the precession of a free body (see Derivation 6a in the Exercises).

One further case deserves some attention, namely, when ¥ = 1 corresponds
to one of the roots of F(u).* Suppose, for instance, a top is set spinning with 1ts
figure axis initially vertical. Clearly then b = a, for /15 and I)a are the constant
components of the angular momentum about the vertical axis and the figure axis
respectively, and these axes are initially coincident. Since the initial angular ve-
locity is only about the figure axis, the energy equation (5.59) evaluated at time
t = (O states that

E'=E- %136«)% = Mgl.

By the definitions of « and 8 (Eq. (5.61)), it follows that ¢ = 8.
The energy equation at any angle may therefore be written as

W= (1 —u)BA —u) —a*(l —u)?
or
i = (1 — u)? [ﬁ(l +u)— a2] :
The form of the equation indicates that ¥ = 1 is always a double root, with the

third root given by

a2

uz = — — 1.

B

*Note that this must be trealed as a special case, smee m the previous discussions factors of un? ¢
were repeatedly divided out of the expressions.
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FIGURE 5.11 Plet of f(x) when the figure axis is imtially vertical.

If a®/8 > 2 (which corresponds to the condition for a “fast” top), u3 is larger
than 1 and the only possible motion is for # = 1; the top merely continues to spin
about the vertical. For this state of affairs, the plot of f(x) appears as shown in
Fig. 5.11{a). On the otber hand, if */8 < 2, the third root u, is then less than
1, f(u) takes on the form shown in Fig. 5.11(b), and the top will nutate between
@ = 0 and @ = 3. There is thus a critical angular velocity, o', above which only
vertical motion is possible, whose value is given by

az_ I 130)’2_2
g \n/)2Mgl ~

72

or

Mglh

=45
5

) (5.80)

which is identical with Eq. {5.79) for the minimum frequency for uniform preces-
sion with 8y = 0,

In practice, if a top is started spinning with its axis vertical and with w3 greater
than the critical angular velocity, it will continue to spin quietly for a while about
the vertical (hence the designation as a “sleeping” top). However, [riction grad-
ually reduces the frequency of rotation below the critical value, and the top then
begins to wobble in ever larger amounts as it slows down.

The effects of friction (which of course cannot be directly included in the La-
grangian framework) can give rise to unexpecied phenomena in the behavior of
tops. A notable example is the “tippie-top,” which consists basically of somewhat
more than half a sphere with a stem added on the flat surface. When set rotating
with the spherical surface downwards on a hard surface, it proceeds to skid and
nutate until it eventually turns upside down, pivoting on the stem, where it then
behaves as a normal “sleeping” top. The complete reversal of the angular mo-
mentumn vector is the result of frictional torque occurring as the top skids on its
spherical surface.
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A large and influential technology is based on the applications of rapidly spin-
ning rigid bodies, particularly through the use of what are called “gyroscopes.”
Basically, a three-frame gyroscope is a symmetrical top rotated very rapidly by
external means about the figure axis and mounted in gimbals so that the motion of
the figure axis is unrestricted about three perpendicular spatial axes while the cen-
ter of gravity remains stationary. The figure axis maintains the same direction in
space no matter how the mounting is reoriented, a phenomenon called gyroscopic
inertia. Such an instrument can indicate the roll, pitch, and attitude directions of
an airplane flying “blind” by using the xyz Euler angle convention described in
Section 4.4 and Appendix A.

If external torques are suitably exerted on the gyroscope, it will undergo the
precession and nutation motions described earlier for the heavy top. However,
the condition for the “fast” top is abundantly satisfied, so that the extent of the
nutation is always very small, and moreover is deliberately damped out by the
method of mounting. The only gyroscopic phenomenon then observed is preces-
sion, and the mathematical treatment required to describe this precession can be
greatly simplified. We can see how to do this by generalization from the case of
the heavy symmetrical top.

If R is the radius vector along the figure axis from the fixed point to the center
of gravity, then the gravitational torque exerted on the top is

N=R)( Mg, (5-81)

where g is the downward vector of the acceleration of gravity. If L3 is the vec-
tor along the figure axis, describing the angular momentum of rotation about the
figure axis, and wp, known as the precession vector, is aligned along the vertical

with magnitude equal to the mean precession angular velocity E, Eq. (5.74). then
the sense and magnitude of the (pseudoregular) precession is given by

wp, xLz=N. (5.82)

Since any torque about the fixed point or center of mass can be put in the form
R x F, similar to Eq. (§.81), the resulting average precession rate for a “fast” top
can always be derived from Eq. (5.82), with the direction of the force F defining
the precession axis. Almost all engineering applications of gyroscopes invalve
the equilibrium behavior (i.e., neglecting transients) which can be derived from
Eq. (5.82).

Free from any torques, a gyroscope spin axis will always preserve its original
direction relative to an inertial system. Gyros can therefore be used to indicate
or maintain specific directions, e.g., provide stabilized platforms. As indicated by
Eq. (5.82), through the precession phenomena they can sense and measure angular
rotation rates and applied torques. Note from Eq. (5.82) that the precession rate
is proportional to the torque. whereas in a nonspinning body it is the angular
acceleration that is given by the torque. Once the torque is removed, a nonspinning
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body will continue to move; under similar conditions a gyro simply continues
spinning without precessing.

The gyrocompass involves more complicated considerations because here we
are dealing with the bchavior of a gy1uscepe fixed in a noninertial system, while
Earth rotates underneath it. In a gyrocompass, an additional precession is auto-
matically applied by an external torque at a rate just enough to balance Earth’s
rotation rate. Once set in the direction of Earth’s rotation, i.e., the north direction,
the gyrocompass then preserves this direction, at least in slowly moving vehicles.
What has been presented here is admittedly an oversimplified, highly compressed
view of the fascinating wchnological uses of tast spinning bodies. To continue
further in thig direction would regrettably lead us too far afield.

There are however two examples of precession phenomena in nature for which
a somewhat fuller discussion would be valuable, both for the great interest in the
phenomena themselves and as examples of the techniques derived in this chapter.
The first concerns the types of precession that arise from the torques induced by
Earth’s equatorial “bulge.” and the second 1s the precession of moving charges in
a magnetic field. The next two sections are concerned with these examples.

PRECESSION OF THE EQUINOXES AND OF SATELLITE ORBITS

It has been mentioned previously that Earth is a top whose figure axis is precess-
ing about the normal to the ecliptic, the plane of Earth’s orbit, a motion known
astronomically as the precession of the equinoxes. Were Earth completely spher-
ical, none of the other members of the solar system could exert a gravitational
torque on it. But, as has been pointed out, Earth deviates slightly from a sphere,
being closely approximated by an oblate spheroid of revolution. It is just the net
torque on the resultant equatorial “bulge” arising from gravitational attraction,
chiefly of the Sun and Moon, that sets Earth’s axis precessing in space.

To calculate the rate of this precession, a slight excursion into potential theory
is needed to find the mutual gravitational potential of a mass point (representing
the sun or the moon) and a nonspherical distribution of matter. We will find the
properties of the inertia tensor as obtained above very useful 1 the derivation of
this potential.

Consider a distribution of mass points forming one body, and a single mass
point, mass M, representing the other (cf. Fig. 5.12). If r, is the distance between
the ith point in the distribution and the mass point M, then the mutunal gravitational
potential between the two bodies is*

_GMm, _ GMm, (5.83)

§ )-\ﬂ—i- (Cri)z—Z%‘, cos ¥

*It may be worth a remmunder that summation s implied over repeated subscripts
y p P p

V =
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FIGURE 5.12 Geometry involved m gravitational potential between an extended body
and a mass point,

In this last expression the terminology of Fig. 5.12 1s used: r/ is the radius vector
to the ith particle from a particular point, which will later be taken to be the center
of mass of the first bocay, r is the corresponding radius vector to the mass point
M, and ¥, is the angle between the two vectors. It is well known that a simple
expansion in terms of Legendre polynomials can be given for Eq. (5.83); in fact,
the reciprocal of the square root in Eq. (5.83) is known as the generating function
for Legendre polynomials, so that
GM r\"

V= S m, (7’) Py (cos ¥r), (5.84)
n=
providing r, the distance from the origin to M, is much greater than any r;. We
shall make use of only the first three Legendre polynomials that, for reference, are

Pox)=1, P(x)=x. PAx)=30x2-1). (5.85)

For a continuous spherical body, with only a radial variation of density, all
terms except the first in Eq. (5.84) can easily be shown to vanish. Thus, the nth
term inside the summation, for a body with spherical symmetry and mass density

p(r"), can be written
[//dV’p(r’) (’7) Pa(cos¥).

Using spherical polar coordinates, with the polar axis along r, this becomes

9 AN +1
/r' ar' p(r" (7) / d(cos ) P, (cos ¥).

From the orthonormal properties of P, with respect to Py, the integral over cos
vanishes except for n = 0, which proves the statement.

If the body deviates only slightly from spherical symmetry, as is the case with
Earth, we would expect the terms in Eq. {5.84) beyond n = 0 to decrease rapidly
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with increasing n. It will therefore be sufficient to retain only the first nonvanish-
ing correction term in Eq. (5.48) to the potential for a sphere. Now, the choice of
the center of mass as origin causes the n = 1 term to vanish identically, since it
can be written

M, /
-—P—zm,rz cosy, = —r—3r - m,x,,
which is zero, by definition of the center of mass. The next term, for n = 2, can
be written

——zﬁm,r,' (1 —3cos '(!I;)
Simple tensor manipulation gives the complete second-order approximation to the
nonspherical potential a3

GMm CM
y=—22" TR s Ty,
r 23

where m is the mass of the first body (Earth), /, is the moment of inertia about the
direction of r, and 7 is the moment of inertia tensor in the principal axis system.
From the diagonal representation of the inertia tensor in the principal axis system,
its tracc is just the sum of the priucipal momems of inertia, so that V' can be
written as

GM GM
V = ———m +'_3[3Ir —'(Il +IZ+I3)]' (5'86)
r 2r

Equation (5.86) is sometimes known as MacCullagh’s formula. So far, no as-
sumption of rotational symmetry has been made. Let us now take the axis of
symmetry to be along the third principal axis, so that I} = L. If «, 8, y are the
direction cosines of r relative to the principal axes, then the moment of inertia I,
can be expressed as

L =he2+ )+ hy?=1 + (s — h)y> (5.87)
With this form for ,, the potential, Eq. (5.86), becomes

GMm GM(l5—1
Vo= - + (’\33 1 Gy -1,
r uF

or

GMm + GM(Is— L)

V =
r r3

Pa(y). (5.88)

The general form of Eq. (5.88) could have been foretold from the start, for the
potential from a mass distribution obeys Poisson’s equation. The solution appro-
priate to the symmetry of the body, as is well known, is an expansion of terms
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of the form P,(y)/r"*1, of which Eq. (5.88) shows the first two nonvanishing
terms. However, this approach does not give the coefficients of the terms any
more simply than the derivation employed here. It should also be remarked that
the expansion of V is the gravitational analog of the multipole expansion of, say,
the electrostatic potential of an arbitrary charged body. The n = 1 term is absent
here because there is only one sign of gravitational “charge™ and there can be no
gravitational dipole moment. Further, the inertia tensor is defined analogously to
the quadrupole moment tensor. Therefore, the mechanical effects we are seek-
ing can be said to arise from the gravitational quadrupole moment of the oblate
Earth.*

Of the terms in Eq. (5.88) for the potential, the only one that depends on the
orientation of the body, and thus could give rise to torques, is

V, 5 (). (5.89)

_ GM (133 D P
For the example of Earth’s precession, it should be remembered that y is the di-
rection cosine between the figure axis of Earth and the radius vector from Earth’s
center to the Sun or Moon. As these bodies go around their apparent orbits, y will
change. The relation of ¥ to the more customary astronomical angles can be seen
from Fig. 5.13 where the orbit of the Sun or Moon is taken as being in the xy
plane, and the figure axis of the bedy in the xz plane The angle 8 between the
figure axis and the z direction is the obliquity of the figure axis. The dot product
of a unit vector along the figure axis with the radius vector to the celestial body
involves only the products of their x-components, so that

y =sinfcos.

Hence, V3 can be written

_GM(5-1))

o 3 sin? 6 cos? n—1.

Vs

D>

cos_l'y x

X

FIGURE 5.13 Figure axis of Earth relative to orbit of mass point.
*Note that so far nothing in the argument restricts the potential of Eq (5.88) to rzgid bodies. The

constraint of ngidity enters ony when we require frcm here on that the principal axes be fized in the
body and the associated moments of 1nertia be constant in time.
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As we shall see, the orbital motion is very rapid compared to the precessional
motion, and for the purpose of obtaining the mean precession rate, it will be ad-
equate to average V, over a complete orbital period of the celestial body consid-
ered. Since the apparent orbits of the Sun and Moon have low eccentricities, r can
be assumed constant and the only variation is in cos . The average of cos? 7 over
a complete period is %, and the averaged potential is then

= GMIZ—-1) (3 . GM(z3—5) (! 3
Vo= (2;3 B (5 slnzf) - 1) = —_(21; ) (5 - ElZ:OS2 9) ,

or, finally,

Vy = _GMU— 1) P(cos6). (5.90)
2r3

The torque derived from Eq. (5.90) is perpendicular to both the figure axis and
the normal to the orbit (which plays the same role as the vertical axis for the heavy
top). Hence, the precession is about the direction of the orbit normal vector. The
magnitude of the precession rate can be obtained from Eq. (5.82), but because the
potential differs in form from that for the heavy top, it may be more satisfying to
obtain a more formal derivation. For any symmetric body in which the potential
is a function of cos A only, the Lagrangian can be written, following Eq. (5.52), as

I . . L, .
L= 2@ +§*sin?0) + = + bcos6)* - V(cos). (5.91)

If we are to assume only uniform precession and are not concerned about the
necessary initial conditions, we can simply take € and @ to be zero in the equations
of motion. The Lagrange equation corresponding to € is then

JdL . . . . B
— = 5¢*sin@cos@ — L3¢ sinB (P + pcosh) — —Y- =0
90 a6
or
. , v
Lwsd — I1¢? = . 5.92
w3¢ — [1p~ cosd 3(cos ) (5.92)

which is the analog of Eq. (5.76") for a more general potential. For slow pre-
cession, which means basically that ¢ < 3, the ¢? terms in Eq. (5.92) can be
neglected, and the rate of uniform precession is given by

_ 1 9V
" Iws 8(cos8)’

(5.93)

From Eq. (5.51') we see that for the heavy top Eq. (5.93) agrees with the average
tesult of Eq. (5.74). With the potential of Eq. (5.90), the precession rate is
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3GM -1
2w3r3 Iy
For the case of the precession due to the Sun, this formula can be put in a

simpler form, by taking r as the semimajor axis of Earth’s orbit and using Kepler’s
law, Eq. (3.71), in the form

¢ = cosf. (5.94)

s (27\* GM
W =1 — = —
0 T P37

The precession rate, relative to the orbital angular velocity, wy, is then

08 0. (5.95)

With the value of (I3 — I))/15 as given in Section 5.6, and 8 = 23°27’, Eq. (5.95)
says that the solar-induced precession would be such as to cause a complete rota-
tion of the figure axis about the normal to the ecliptic (plane of Earth’s orbit) in
about 81,000 years.

The Moon is far less massive than the Sun, but it is also much closer; the net re-
sult is that the lunar-induced precession rate is over twice that caused by the Sun.
Since the lunar orbit is close to the ecliptic and has the same sense as the apparent
solar orbit, the two precessions nearly add together arithmetically, and the com-
bined lunisolar precession rate is 50.25"/year, or one complete rotation in about
26,000 years. Note that this rate of precession is so slow that the approximation
of neglecting ¢ compared to w3 is abundantly satisfied. Because the Sun, Moon,
and Earth are in constant relative motion, and the Moon’s orbit is inclined about
57 w the ecliptic, the piecession exhibits irregulatities Jdesignated as ustronomicul
nutation. The extent of these periodic irregularities is not large—about 9” of arc
in 6 aad about 18” in ¢. Even so, they are far larger than the true nutation that, as
Klein and Sommerfeld have shown, is manifested by the Chandler wobble whose
amplitude is never more than a few tenths of an arc second.

One further application can be made of the potential, Eq. (5.88), and associ-
ated uniform precession rate, Eq. (5.93). It has been suessed that the potential
represents a mutual gravitational interaction; if it results in torques acting on the
spinning Earth, it also gives rise to (noncentral) forces acting on the mass point M.
The effect of these small forces appears as a precession of the plane of the orbit
of the mass point, relative to an inertial frame. It is possible to obtain an approx-
imate formula for this precession by an argument again based on the behavior of
spinnng ngid bodies.

Since the precession rates are small compared to the orbital angular velocity,
we can again average over the orbit. The averaging in effect replaces the par-
ticle by a rigid ring of mass M with the same radius as the (assumed circular)
orbit, spinning about the figure axis of the ring with the orbital frequency. Equa-
tion (5.90) gives the potential field in which this ring is located, with & the angle
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between the figure axes of the ring and Earth. The average precession rate is still
given by Eq. (5.93), but now I3 and ws refer to the spinning ring and not Earth.
It would therefore be better to rewrite Eq. (5.93) for this application as

. T ov ,
= b d(cos @)’ (5939
and Eq. (5.94) appears as
. T 3G — 1Y) ,

Equation (5.94’) could be used, for example, to find the precession of the orbit of
the Moon due to Earth’s oblateness. A more current application would be to the
precession of nearly circular orbits of artificial satellites revolving about Earth.
The fraction of a complete precession rotation in one period of the satellite is

2 2/ 2 rs

An application of Kepler’s law, this time for the period of the satellite, reduces
this result to

08 06.

gt _ _3L-0L

2n 2 mr?

where m is Earth’s mass. If Earth were a uniform sphere, then the principal mo-
ments of mertia would be

osf, (5.90)

Iy~1) = %mRZ,

with R Earth’s radius. Because the core is much more dense than the outer layers,
the moment of inertia is smaller, such that in fact*

I3 = 0.331mR* ~ imR?.

The approximate precession is thus given by

: 2
f—; = —% I 2 d (?) cosB. (5.97)

For a “close™ satellite where r is very close to R, and the inclination of the satellite
orbit to the equator is, say, 30°, Eq. (5.97) says that the plane of the orbit precesses
completely around 27 in about 700 orbits of the satellite. Since the period of a
close satellite is about 1} hours, complete rotation of the orbital plane occurs
in a Little over six weeks time. Clearly the effect is quite significant. We shall
rederive the precession of the satellite orbit later on, when we discuss the subject
of perturbation theory (cf. Section 12.3).

*The best values of I3 are now obtained from observation of just such effects on satellite orbats.
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PRECESSION OF SYSTEMS OF CHARGES IN A MAGNETIC FIELD

The motion of systems of charged particles in magnetic fields does not normally
involve rigid body motion. In a number of particular instances, the motion is how-
ever most elegantly discussed using the techniques developed here for rigid body
motion. For this reason. and because of their importance in atomic and nuclear
physics, a few examples will be given here.

The magnetic moment of a system of moving charges (relative to a particular
origin) is defined as

M= %q,(r, X V,) — %/dV Le(R)(r X V). (5.98)

Here the first expression is a sum over discrete particles with charge ¢,, while the
second is the corresponding generalization to a continuous distribution of charge
density p.(r). The angular momentum of the system under corresponding con-
ventions is

L=m(r xv,)— depm(r)(rx V).

Both the magnetic moment and the angular momentum have a similar form.
We shall restrict the discussion to sitnations in which M is directly proportivnal
to L:

M=yL, (5.99)

most naturally by having a uniform g/m ratio for all particles or at all points in
the continuous systen. In such cases, the gyromagnetic ratio y is given by

y =L, (5.100)
wm
but, with an eye to models of particle and atomic spin, y will often be left unspec-

ified. The forces and torgues on a magnetic dipole may be considered as derived
from a potential

V =—-(M:-B). (5.101)

It is implied along with Eq. (5.101) that the magnetic field is substantially
constant over the system. Indeed, the picture applies best to a pointlike magnetic
moment whose magnitude is not affected by the motion it undergoes—a picture
appropriate to permanent magnets or systems on an atomic or small scale. With
uniform B, the potential depends only on the orientation of M relative to B; no
forces are exerted on the magnetic moment, but there is a torque

N=MxB. (5.102)
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(Compare with Eq. (5.81).) The time rate of change of the total angular momen-
tum is equal to this torque, so that in view of Eq. (5.99) we can write
dL

7l yL x B. (5.103)

But this is exactly the equation of motion for a vector of constant magnitude
rotating in space about the direction of B with an angular velocity @ = —yB.
The effect of a uniform magnetic field on a permanent magnetic dipole is to canse
the angular momentum vector (and the magnetic moment) to precess uniformly.

For the classical gyromagnetic ratio, Eq. (5.100), the precession angular veloc-
ity is

w, = —Q, (5.104)
2m
known as the Larmor frequency. For elecirons g is negative, and the Larmor pre-
cession is counterclockwise around the direction of B.

As a second example, consider a collection of moving charged particles, with-
out restrictions on the nature of their motion, but assumed to all have the same
g/m ratio, and to be in a region of uniform constant magnetic field. It will also
be assumed that any interaction potential between particles depends only on the
scalar distance between the particles. The Lagrangian for the system can be writ-
ten (cf. Eq. (1.63))

1
L=gmvl+ Lmv - 8} + Vi —x,D, (5.105)

where the constant magnetic field B is generated by a vector potential A:

A=1Bxr (5.106)
In terms of B, the Lagrangian has the form (permuting dot and cross products)
[
L= —m,v,2 + Q « (r; xmiv,) + V(|r, = rj)). (5.107)
2 2m

The interaction term with the magnetic field can be variously written (cf.
Egs. (5.101) and (5.104))

4B - L

=M:B=-w, - (r, xmV,). (5.108)
2m

Suppose now we express the Lagrangian in terms of coordinates relative to
“primed” axes having a common origin with the original set, but rotating uni-
formly about the direction of B with angular velocity «y. Distance vectors from
the origin are unchanged as of course are scalar distances such as |r, — r;|. How-
ever, velocities relative to the new axes differ from the original velocities by the
relation

v,-=vf+co1xr,.
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The two terms in the Lagrangian affected by the transformation are
mv:  mu'? m

Yy v / !

= +myv, - (o x1,)+ —

7 ) Y, (o l) )

—oy v X M,y = —op + (¥, X 1, V) — ey« (¥, x m, (e x 1;)).

(e x 1) - (@ x 1),

By permuting dot and cross product, we can see that the terms linear in «wy and
v, are just equal and opposite and therefore cancel in the Lagrangian. A similar
permutation in the terms quadratic in w; show that they are of the same form and
are related to the moment of inertia of the <ystem about the axis defined by ¢y (cf
Section 5.3). The quadratic term in the Lagrangian can in fact be written as

1 1
S x 1) (@ x 1) =~z - 1wy = =5 1af, (5.109)

where /; denotes the moment of inertia about the axis of ¢r. In terms of coordi-
nates in the rotating system, the Lagrangian thus has the simple form

L= %mzvl’z + V(I —1;]) - 1hef. (5.110)

from which all linear terms in the magnetic field have disappeared.

We can get an idea of the relative magnitude of the quadratic term by con-
sidering a situation in which the motion of the sysiem consists of a rotation with
some frequency w, €.g., an electron revolving around the atomic nucleus. Then for
systems not too far from spherical symmetry, the kinetic energy is approximately
%I w? (without subscripts on the moment of inertia) and the linear term in w; is
on the order of ey - L ~ Iww. Hence, the quadratic term in Eq. (5.110) is on
the order of (e;/w)? compared to the kinetic energy, and on the order of (wy/w)
relative to the linear term,

In most systems on the atomic or smaller scale, the natural frequencies are
much ‘arger than the Larmor frequency. Compare, for example, the frequency of
a spectral line (which is a difference of natural frequencies) to the frequency shift
in the simple Zeeman effect, which is proportional to the Larmor frequency. Thus,
for such systems the motion in the rotating system is the same as in the laboratory
system when there is no magnetic field What we have is Larmor’s theorem, which
states that to first order in B, the effect of a constant magnetic field on a classical
system: is to superimpose on its normal motion a uniform precession with angular
frequency @y.

DERIVATIONS

L If R, 15 an antisymmetric mairix associated with the coordinates of the ith mass point
of a system, with elements Ryp = €,y show that the matrix of the inertia tensor
can be wrtten as

I=—m(R)%
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2. Show directly by vector manipulation that the definition of the moment of inertia as
I =mj@x, xn)-(r, xn)

~educes to Eq (5 18)

3. Prove that for a general rigid body motion about a fixed point, the time variation of
-he kunetic energy T is given by

dT
—=w-N
dt
4. Derive Euler’s equations of motion, Eq (5.39'), from the Lagrange equation of mo-
tion, in the form of Eq. (1.53), for the generalized coordinate .

5. Equation (5.38) holds for the motions of systems that are not rigid, relative to a chosen
rotating set of coordinates. For general nonrigid motion, if the rotating axes are chosen
to coincide with the (instantaneous) principal axes of the continuous system, show that
Eqgs. (5.39) are to be replaced by

d(hay)

dl
i +€Uka)1wk1k—a),—'=N,, i=1273,

di

where
I, = de p(r)e,jkx,-v,'c

with p(r) the mass density at point r, and v’ the velocity of the system point at r
relative to the rotating axes. These equations are sometimes known as the Lrouville
equations and have applications for discussing almost-rigid motion, such as that of
Earth including the atmosphere and oceans.

6. (a) Show that the angular momentum of the torque-free symmetrical top rotates in
the body coordinates about the symmetry axis with an angular frequency £2. Show
also that the symnetry axis rotates in space about the fixed direction of the angular
momentum with the angular frequency

_ hws
~ L cos@’

where ¢ 1s the Euler angle of the line of nodes with respect to the angular mo-
mentum as the space z axis.

(b) Using the resulis of Exercise 15, Chapter 4, show that & rotates in space about
the angular momentum with the same frequency ¢, but that the angle 8’ between
w and L is given by

€2
sing’ = = sin 6",

where 8" is the inclination of @ to the symmetry axis. Using the data given 1n
Section 5.6, show therefore that Earth’s rotation axis ard the axis of angular mo-
mentum are never more than 1.5 cm apart on Earth’s surface.



234

Chapter 5 The Rigid Body Equations of Motion

7.

10.

i1,

12,

{¢) Show from parts (a) and (b) that the motion of the force-free symmetrical top
can be described in terms of the rotation of a cone fixed in the body whose axis
is the symmetry axis, rolling on a fixed cone 1n space whose axis is along the
angular momenum. The angular velocity vector is along the line of contact of the
two cones. Show that the same description follows immezdiately from the Peinsot
construction in ferms of the mertia ellipsoid.

For the general asymmetncal ngid body, verify analytically the stability theorem
shown geomeitrically above on p. 204 by examuning the solution of Euler’s equations
for small deviations from rotation about each of the principal axes. The direction of
o is assumed to differ so slightly from a principal axis that the component of « along
the axis can be taken as constant, while the product of components perpendicular to
the ax1s can be neglected. Discuss the boundedness of the resultant motion for each of
the three principal axes.

When the ngid body 18 not symmetrical, an analytic solution to Euler’s equation for
the torque-free motion cannot be given in terms of elementary functions. Show, how-
ever. that the conservation of energy ard angular momentum can be used to cbtan
expressions for the body components of e in terms of elliptic integrals.

Apply Euler's equations to the problem of the heavy symmetrical top, expressing a;
in terms of the Euler angles, Show that the two integrals of motion, Eqgs. (5.53) and
15.54), can be obtained directly from Euler’s equations in this form.,

Obtain from Euler’s equations of motion the condition (5.77) for the uniform preces-
ston of a symmetrical top in a gravitational field, by imposing the requirement that the
motion be a unsform. precession without nutation

Show that the magnitude of the angular momentum for a heavy symmetrical top can
be expressed as a function of 6 and the constants of the motion only. Prove that as a
result the angular momentum vector precesses umformly only when there is umiform
precession of the symmetry axis

{a) Consider a pnmed set of axes coincident in origin with an inertial set of axes
but rotating with respect to the inertial frame with fixed angular velocity ey. If
system of mass points is subject to forces derived from a conservative potential
V depending only on the distance to the origin, show that the Lagrangian for the
system in terms of cootdinates relative to the primed set can be written as

L=T’+w0-L’+%w0-l'-w0—V,

where pnmes indicate the quantities evaluated relative to the primed set of axes.
What 1s the physical sigmficance of each of the two additional terms?

{b) suppose that ey is in the xjx} plane and that a symmetric top is constrained to
move with its figure axis mn the x,x] plane. so that only two Euler angles are
needed to descnbe its onentation. If the body 15 mounted so that the center of
mass is fixed at the orlgm and V = 0, show that the figure axis of the body
oscillates about the x4 axis according to the plane-pendulum equation of motion
and find the frequency of small oscillations. This illustrates the principle of the
gyro compass.
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EXERCISES

13'

14.

15.

16.

17.

18.

19.

Two thin rods each of mass m and length/ are connected to an ideal (no friction) hinge
and a horizontal thread. The system rests on a smooth surface as shown in the figure.
At time ¢ — 0, the thread is cut. Neglecting the mass of the hinge and the thread, and
considering only motion mn the x) plane

(a) Find the speed at which the hinge hits the floor.

(b) Find the time 1t takes for the hinge to hit the floor.
¥

thread

30° 30°

23 4

What is the height-to-diameter ratio of a right cylinder suca that the 1nertia ellipsoid
at the center of the cylinder 1s a sphere?

Find the principal moments of 1nertia about the center of mass of a flai rigid bedy in
the shape of a 45° right triangle with uniform mass density. What are the principal
axes?

Three equal mass peints are located at (2, 0, 0), (0, a, 2a), (0, 2a, a). Find the princi-
pal moments of inertia about the origin and a set of pnncipal axes.

A uniform night circular cone of height 4, half-angle o, and density p rolls on its
side without slipping on a uniform horizontal plane 1n such a manner that it returns
to its original posinon in a time 7. Find expressions for the kinetic energy and the
components of the angular momentum of the cone.

(&) A bar of negligible weight and length { has equal mass points m at the two ends.
The bar is made to rotate uniformly about an axis passing through the center
of the bar and making an angle # with the bar. From Euler’s equations find the
components along the principal axes of the bar of the torque driving the bar.

(b) From the fundamental torque equation (1 26) find the components of the torque
along axes fixed in space. Show that these components are consistent with those
found in part (a).

A uniform bar of mass M and length 2/ is suspended from one end by a spring of
force constant k. The bar can swing freely only in one vertical plane, and the spring is
constrained to move only in the vertical direction. Set up the equations of motion in
the Lagrangian formulation.
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20.

21.

22.

23,

24,

25.

26'

~—=— suspension
point

attachmept e
point

A plane pendulum consists of a uniform rod of length ! and negligible thickness with
mass m, suspended in & vertical plane by one end. At the other end a umform disk of
radius a and mass M ‘s attached so it can rotate freely in its own plune, which is the
vertical plane. Set up the equations of motion in the Lagrangian formulation.

A compound pendulum consists of a ngid body in the shape of a lamina suspended
m the vertical plane at a pont other than the center of gravity. Compute the period
for small oscillations 1n terms of the radius of gyration about the center of gravity
and the separation of the point of suspension from the center of gravity. Show that if
the pendulum has the same period for two points of suspension at unequal distances
from the center of gravity, then the sum of these distances 1s equal to the length of the
equivalent simple pendulum.

A uniform rod shdes with its ends mside a smooth vertical circle If the rod subtends
an angle of 120° at the center of the circle. show that the equivalent simple pendulum
has a length equal to the radius of the circle.

An automobile is started from rest with one of its doors initially at right angles. If
the hinges of the door are toward the front of the car, the door will slam shut as the
automobile picks up speed. Obtain a formula for the time needed for the door to close
if the accelerauon f ts constant, the radius of gyration of the door about the axis of
rotation 1s rp, and the center of mass is at a distance a from the hinges. Show that
if fis 0.3 m/s2 and the doo1 is & uniform rectangle 1.2 m wide, the time will be
approximately 3.04 s,

A wheel rolls down a flat inchined surface that makes an angle « with the horizontal.
The wheel is constrained so that its plane is always perpendicular to the mclined
plane, but 1t may rotate about the axis normal to the surface. Obtain the solution for
the two-dimensional motion of the wheel, asing Lagrange’s equations and the method
of undetermined multipliers,

(a} Express in terms of Euler’s angles the constraint conditions for a uniform sphere
rolling without slipping on a flat horizontal surface. Show that they are nonholo-
nomic.

(b) Set up the Lagrangian equations for this problem by the method of Lagrange

multipliers. Show that the translationz] and rotational parts of the kinetic energy
are separately conserved. Are there any other constants of motion?

For the axially symmetnic body precessing umformly 1n the absence of torques, find
analytical solutions for the Euler angles as a function of time.
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27.

28.

29.

30.

In Section 5.6, the precession of Earth’s axis of rotation about the pole was calculated
on the basis that there were no torques acting on Earth. Section 5.8, on the other hand,
showed that Earth 15 undergoing a forced precession due to the torques of the Sun
and Moon. Actually both results are valid: The motion of the axis of rotation about
the syminetry axis appears as the nutation of the Earth in the course of its forced
precession. To prove this statement, calculate # and ¢ as a function of tume for a
heavy symmctrical top that is given an initial velocity q50, which 1s large compared
with the net precession velocity £/2a, but which 1s small compared with w3. Under
these conditions, the bounding circles for the figure axis still lie close together, but the
orbit of the figure axis appears as 1n Fig, 5.9(b), that 15, shows large loops that move
only slowly around the vertical Show for this case that (5 71) remains valid but now

x) = (ﬁ - Zﬂ) Sin290.

az a

From these values o 8 and ¢, obtain w; and @y, and show that for 8/2a small com-

pared with ¢y, the vector w precesses around the figure axis with an angular velocity

Ii=1)
Iy

Q=

1n agreement with Eq. (5.49). Verify from the numbers given i Section 5.6 that ¢y
corresponds to a peniod of about 1600 years, so that ¢ 1s certainly small compared
with the daily rotation and 1s sufficiently large compared with /24, which corre-
sponds to the precession period of 26,000 years.

Suppose that in a symmetrical top cach element of mass has a proportionate charge
associated with it, so that the ¢/m ratio is constant—the so-called charged symmetnc
top. If such a body rotates 1n a uniform magnetic field the Lagrangian, from (5.108),
18

L=T—-aw-L.

Show that T 1s a constant (which is a mamfestation of the property of the Lorentz
force that a magnetic field does no work on a moving charge) and find the other
constants of motion Under the assumption that ¢} 15 much smaller than the mitial
rotational velocity about the figure axis, obtain expressions for the frequencies and
amplitudes of nutation and precession. From where do the kinetic energies of nutation
and precession come?

A homogeneous cube of sides /15 1nitially at rest in unstable equilibrium with one edge
mn contact with a horizontal plane. The cube is given a small angular displacement and
allowed to fall. What 15 the angular velocity of the cube when one face contacts the
plane if:

(a) the edge 1n contact with the plane cannot slide?

(b) the plane 1s fnctionless so the edge can slide?

A door is constructed of a thin homogeneous material. Tt has a height of 2 m and a
width of 0.9 m. If the door is opened by 90° and released from rest, it is observed that
the door closes itself in 3 s, Assuming that the hinges are fuctionless, what angle do
these hinges make with the vertical?
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6.1 1

Oscillations

A clags of mechanical motions that can best bc trcated in the Lagrangian for-
mulation is that of the oscillations of a system about positions of equilibrium.
The theory of small oscillations finds widespread physical applications in acous-
tics, molecular spectra, vibrations of mechanisms, and coupled electrical cir-
cuits. If the deviations of the system from stable equilibrium conditions are
small enough, the motion can generally be described as that of a system of
coupled linear harmonic oscillators. It will be assumed the reader is familiar with
the properties of a simple harmonic oscillator of one degree of freedom, both in
free and forced oscillation, with and without damping. Here the emphasis will be
on methods appropriate to discrete systems with more than one degree of free-
dom. As will be seen, the mathematical techniques required turn out to be very
similar to those employed in studying rigid body motion, although the mechanical
systems considered need not involve 1igid bodies at all. Analogous treatments of
oscillations about stable motions can also be developed, but these are most easily
done in the Hamiltonian formulation presented in Chapter 8.

FORMULATION OF THE PROBLEM

We consider conservative systems in which the potential energy is a function of
position only. It will be assumed that the transformation equations defining the
generalized coordinates of the system, g3, .., gn, do not involve the time explic-
itly. Thus, time-dependent constraints are to be excluded. The system is said to be
in equilibrium when the generalized forces acting on the system vanish:

g, /o

The potential energy therefore has an extremum at the equilibrium configuration
of the system, go1, go2, -..qos. If the configuration is initially at the equilib-
rium position, with zero initial velocities ¢, then the systcm will continue in
equilibrium indefinitely. Examples of the equilibrium of mechanical systems are
legion—a pendulum at rest, a suspension galvanometer at its zero position, an egg
standing on end.

An equilibrium position is classified as sfable if a small disturbance of the
system from equilibrium results only in small bounded motion about the rest po-
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sition. The equilibrium is unstable if an infinitesimal disturbance eventually pro-
duces unbounded motion. A pendulum at rest is in stable equilibrium, but the
egg standing on end is an obvious illustration of unstable equilibrium. It can be
readily seen that when the extremum of V is a minimum the equilibrium must
be stable. Suppose the system is disturbed from the equilibrium by an increase in
energy dE above the equilibrium energy. If V is a minimum at equilibrium, any
deviation from this position will produce an increase in V. By the conservation of
energy, the velocities must then decrease and eventually come to zero, indicating
bound motion. On the other hand, if V' decreases as the result of some departure
from equilibrium, the kinetic energy and the velocities increase indefinitely, corre-
sponding to unstable motion. The same conclusion may be arrived at graphically
by examining the shape of the potential energy curve, as shown symbolically in
Fig. 6.1. A more rigorous mathematical proof that stable equilibrium requires a
minimum in V will be given in the course of the discussion.

We shall be interested in the motion of the system within the immediate neigh-
borhood of a configuration of stable equilibrium. Since the departures from equi-
librium are too small, all functions may be expanded in a Taylor series about the
equilibrium, retaining only the lowest-order terms. The deviations of the general-
ized coordinates from equilibrium will be denoted by 7;:

@ = qo + 7 (6.2)

and these may be taken as the new generalized coordinates of the motion. Ex-
panding the potential energy about gy, , we obtain

IV 1{ 9%v
Vigi,....qn) = Vi{aot, ..., — - P,
(@1 Gn) (go1 gon) + ( )0 n + 3 ( 5, aq,) mnj+

3gi

q,— 9, —

(a) Stable {b) Unstable

FIGURE 6.1 Shape of the potential energy curve al equilibrium.
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where the summation convention has been invoked, as usual. The terms linear in
1, vanish automatically in consequence of the equilibrium conditions (6.1). The
first term in the series is the potential energy of the equilibrium position, and by
shifting the arbitrary zero of potential to coincide with the equilibrium potential,
this term may also be made to vanish. We are therefore left with the quadratic
terms as the first approximation to V:

1{ a%v 1
V= =Yy, »
5 (afhaq])oq‘nj 2VJ77 1, 6.4

where the second derivatives of V' have been designated by the constants V;, de-
pending only upon the equilibrium values of the ¢,’s. It is obvious from their
definition that the V;;’s are symmetrical, that is, that V, ; = V. The V;; coeffi-
cients can vanish under a variety of circumstances. Thus, the potential can simply
be independent of a particular coordinate, so that equilibrium occurs at any ar-
bitrary value of that coordinate. We speak of such cases as neutral or indifferent
equilibrium. It may also happen, for example, that the potential behaves like a
quadratic at that point, again causing one or more of the ¥;,’s to vanish. Either
situation calls for special tieatment in the mathematical discussion that follows.

A similar series expansion can be obtained for the kinetic energy. Since the
generalized coordinates do not involve the time explicitly, the kinetic energy 1s a
homogeneous quadratic function of the velocities (cf. Eq. (1.71)):

T= %m'j‘)féj = %mufhﬁj- 6.5)

The coefficients m,; are in general functions of the coordinates g¢, but they may
be expanded in a Taylor series about the equilibrium configuration:
am,;
Mgy - - > qn) = mij(qo1. . .., gon) + (3—”-) M+
qx /o

As Eq (6.5) is already quadratic in the 7, s, the lowest nonvanishing approxima-
tion to T is obtained by dropping all but the first term in the expansions of m;;.
Denoting the constant values of the m,; functions at equilibrium by T;;, we can
therefore write the kinetic energy as

T = {Tijii;. (6.6)

It is again obvious that the constants 7;, must be symmetric, since the individ-
ual terms in Eq. (6.6) are unaffected by an interchange of indices. From Egs. (6.4)
and (6 6), the Lagrangian is given by

L= %(Tijfhﬁ] — Viymn;). (6.7)

Taking the s as the general coordinates, the Lagrangian of Eq. (6.7) leads to the
following n equations of motion:

Tl]ﬁl] + Vlﬂ']j =0. (6.8)
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where explicit use has been made of the symmetry property of the V;; and T;,
coefficients. Each of Egs. (6.8) will involve, in general, all of the coordinates 7,,
and it -s this set of simultaneous differential equations that must be solved to
obtain the motion near the equilibrium.

In almost all cases of interest, the kinetic energy term can be easily written so
as to have no cross terms.* This corresponds to the Lagrangian

L =3T3 - Vymnj), (6.9)
which generates the following equations of motion

Tf, +Vyn, =0. (no sum over i) (6.10)

THE EIGENVALUE EQUATION AND THE
PRINCIPAL AXIS TRANSFORMATION

The equations of motion (6.8) are linear differential equations with constant co-
efficients, of a form familiar from electrical circuit theory. We are therefore led to
try an oscillatory solution of the form

m = Cae *“". (6.11)

Here Ca, gives the complex amplitude of the oscillation for each coordinate 7,
the factor C being introduced for convenience as a scale factor, the same for all
coordinates. It is understood of course that it is the real part of Eq. (6.9) that is
to correspond to the actual motion. Substitution of the trial solution (6.9) into
the equations ot motion leads to the following equations for the amplitude fac-
tors:

(Vija, — 0*Tj;a,) = 0, (6.12)

Equations (6.12) constitute n linear homogeneous equations for the @,’s, and
consequently can have a nontrivial solution only if the determinant of the coeffi-
cients vanishes:

*Mathematically, we could go even further when the coordinales are Cartesian and making the 7;; =
&;; by rescaling the coordinates. Snch coordinates arz called mass-weighted coordinates since they
are generated by dividing the coordinates by the squa-e root of the mass. This transforms the kinetic
energy lo the form

L

T="3

Thas reduces the problem to the eigenvalue problem of Chapters 4 and 5, only in » dimensions instead
of three, however, the mathematical simplification can obscure the physics, since each coordinate can
have a different characteristic scale
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Vil — T Viz — ?Thy
Var —? T Ve — 0?Tn
Vot — 02T, =0. (6.13)

This determinantal condition is in effect an algebraic equation of the nth de-
gree for w?, and the roots of the determinant provide the frequencies for which
Eq. (6.11) represents a correct solution to the equations of motion. For each of
these values of w?, Eqgs. (6.12) may be solved for the amplitudes of a,, or more
precisely, for n — 1 of the amplitudes in terms of the remaining g;.

Equations (6.12) represent a type of eigenvalue equation, for writing 7; ; 88 an
element of the matrix T, the equations may be written

Va = iTa. 6.14)

Here the effect of V on the eigenvector a is not merely to reproduce the vector
times the factor A, s iu lhe ordinary eigenvalue problem. Instead, the eigenvector
is such that V acting on a produces a multiple of the result of T acting on a. We
shall show that the eigenvalues A for which Eq. (6.14) can be satisfied are all real
in consequence of the symmetric and reality properties of T and V, and, in fact,
must be positive. It will also be shown that the eigenvectors a are orthogonal—in
a sense. In addition, the matrix of the eigenvectors, A, diagonalizes both Tand V,
the former to the unit matrix 1 and the latter to a matrix whose diagonal elements
are the eigenvalues A. Most importantly it is necessary to show that a and A are
real.

Proceeding as in Section 5.4, let a; be a column matrix representing the kth
eigenvector, satisfying the eigenvalue equation*

Vag = A Tag. (6.15)

Assume now that the only solution to Eqg. (6.15) involves complex A and a. The
adjoint equation, i.e., the transposed complex conjugate equation, for A; has the
form

aV =2*ajT. 6 16)
Here a;' stands for the adjoint vector—the complex conjugate row matrix—and
explicit use has been made of the fact that the V and T matrices are real «nd
symmetric. Multiply Eq. (6.16) from the right by a; and subtract the result of

the similar product of Eq. (6.15) from the left with af. The left-hand side of the
difference equation vamshes, leaving only

0 = (A — AD)a) Tay. 6.17)

*It hardly need be added that there 18 ro summation over & i Eq (6 15). Indeed, in thus chapter the
summation convention will apply only to the components of matrices or tensors (of any rank) and not
to the matrices and tensors themselves.
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When ! =k, Eq. (6.17) becomes
(A — AD)alTa, =0, (6.18)

That the matrix product in Eq. (6.18) is real can be shown immediately by taking
its complex conjugate and using the symmetry property of T. However, we want
to prove that the matrix product is not only real but is positive definite. For this
purpose, separate a; into its real and imagimary components,

a; = o +iPr.

The matrix product can then be written as
azTak =&, Tag + ﬁkTﬁk +i(a T — BkTak). (6.19)

The imaginary term vanishes by virtue of the symmetry of T and therefore, as
noted earlier, the matrix product 1s real. Further, the kinetic energy 1n kq. (6.6)
can be rewritten in terms of a column matrix 7 as

T = 1qT4. (6.20)

Hence, the first two terms in Eq. (6.18) are twice the kinetic energies when the
velocily matrix 1 has the values oy and B, respectively. Now, a kinetic energy
by its physical nature must be positive definite for real velocities, and therefore
the matrix product in Eq. (6.18) cannot be zero. It follows that the eigenvalues A
must be real.

Since the eigenvalues are real, the ratios of the eigenvector components a K
determined by Eqs. (6.15) must all be real. There is still some indeterminateness
of course since the value of a particular one of the a ;s can still be chosen at will
without violating Eqgs. (6.15). We can require however that this component shall
be real, and the reality of Ax then ensures the reality of all the other components.
(Any complex phase factor in the amplitude of the oscillation will be thrown into
the factor C, Eq. (6.11).) Multiply now Eq. (6.15) by ax from the left and solve
for A;:

apVag
T aTa

6.21)

The denominator of this expression is equal to twice the kinetic energy for veloc-
ities a,; and since the eigenvectors are all real, the sum must be positive defimte.
Similarly, the numerator is the potential energy for coordinates «,z, and the con-
dition that V be a minimum at equilibriuim requires that the sum must be positive
or zero. Neither numerator nor denominator can be negative, and the denominator
cannot be zero, hence A is always finite and positive. (It may however be zero.)
Recall that A stands for w?, so that positive A corresponds to real frequencies of
oscillation. Were the potential not a local minimum, the numerator in Eq. (6.21)
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might be negative, giving rise to imaginary frequencies that would produce an un-
bounded exponential increase of the 7; with time. Such motion would obviously
be unstable, and we have here the promised mathematical proof that a minimum
of the potential is required for stable motion.

Let us return for the moment to Eq. (6.17) which, in view of the reality of the
eigenvalues and eigenvectors, can be written

(e — ApDayTag = 0. 6.17)

If all the roots of the secular equation are distinct, then Eq. (6.17’) can hold only
if the matrix product vanishes for / not equal to k:

aTa, =0, [#£k (6.222)

It has been remarked several times that the values of the aj;’s are not completely
fixed by the eigenvalue equations (6.12). We can remove this indeterminacy by
requiring further that

agTa, = 1. (6.22b)

There are n such equations (6.22), and they uniquely fix the one arbitrary compo-
nent of each of the n eigenvectors a;.* If we form all the eigenvectors ay into
a square matrix A with components aj; (cf. Section 4.6), then the two equa-
tions (6.22a and b) can be combined into one matrix equation:

ATA =1. (6.23)

When two or more of the roots are repeated, the argument leading to Eq. (6.22a)
falls through for A; = Ax. We shall reserve a discussion of this exceptional case
of degeneracy for a later time. For the present, suffice it to state that a set of
aji coefficients can always be found that satisfies both the eigenvalue conditions
Eqgs. (6.10), and Eq. (6.22a), so that Eq. (6.23) always holds.

In Chapter 4, the similarity transformation of a matrix C by a matrix B was
defined by the equation (cf. Eq. (4.41):

C' =BCB™.
*Equation (6.22b) may be put in a form that explicitly shows that it suffices to remove the indetermi-

nacy in the aj;’s. Suppose it is the magnitude of ajy that is to be evaluated; the ratio of all the other
ajk’s to ajy is obtained from Egs. (6.12). Then Eq. (6.22b) can be written as

ik ajk 1
Z i 5

alk A1k aj,

The left-hand side is completely determined from the eigenvalue equations and may be evaluated
directly to provide ag.
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We now introduce the related concept of the congruence transformation of C by
A according to the relation

C' = ACA. (6.24)

If A is orthogonal, so that A = A~L there is no essential difference between
the two types of transformation (as may be seen by denoting A~! by the matrix
B). Equation (6.23) can therefore be read as the statement that A transforms T
by a congruence transformation into a diagonal matrix, in particular into the unit
matrix.

If a diagonal matrix A with elements A;z = A8k is introduced, the eigenvalue
equations (6.15) may be written

Vijajk = Tijajihi,
which becomes in matrix notation
VA = TAA. (6.25)
Multiplying by A from the left, Eq. (6.25) takes the form
AVA = ATAA,
which by Eq. (6.23) reduces to
AVA = A. (6.26)

Our final equation (6.26) states that a congruence transformation of V by
A changes it into a diagonal matrix whose elements are the eigenvalues Ag.
Eq. (6.26) has solutions

IV—A1=0. (6.26")

In summary we can use normalized Cartesian coordinates so that 7;; = §;; which
reduces the physics to solving

AA=1 (436) and  AVA = Vaigona (6.26),

or we may choose more general goordinates where 7;; # J;;, even allowing
T;j =Tj; #0fori # j, and use

ATA=1 (6.23) and  AVA = Vgiggona (6.26),

to solve the general problem.
As an example, we consider a particle of mass m with two degrees of freedom
(x1, x2) that obeys the Lagrangian (cf. Eq. (6.9))

1 -2 ) 1
L= 'fm(xl +x5) — EV,-jx,-xj
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where the V;, are constants. The congruence transformation (6.26) has solutions
only when Eq. (6.26") is satisfied, so
Vin—4  Viz |_,
Va1 Vi —A

This equation has two solutions:

M =4 (Vi + Voo o+ v/(Vir — Voo +4Vi2Var )

ha=1 (Vu + Va2 — vV (Vi1 = V2)? +4V12V21) .
Associated with the eigenvalues A, are the eigenvectors ;; that satisfy
a;;(Viy —0,4,;)=0 and a?l +a,22 =1 (nosumon j)
We consider two limiting cases. The first case assumes Vi) > Vy; > 0 and

0 # V1 = Vi2 « (V1) — V22). We write the small quantity § = [Vy2/ (Vi1 —Vag)]
then, to first order in §, the eigenvalues are

A= Vi + Vieé
1 1 12 627
Ay — Va2 — V26
whose eigenvectors are, to lowest order in §,
82 5
—% =84
a= |41 @] _ 2 2 (6.28)
ai  ap -8 1_¢&
2z 2

These correspond to the relations

ait =ap and ap = —a.
The other limiting case assumes Viz > Va2 > 0 and (Vi - V) K Vi2 = Va.

We now write & = (V1 — Va2)/8Vi2, which is a small quantity. To first order in
¢ the eigenvalues are

A =3(Vir + Vi) + Via + (Vi — Vpde

" (6.29)
A2=3z(Vi1 + Va2) — Viz — (Vi — Vp)e
whose eigenvectors are, to lowest order in g,
L(1+2) —=(1-2¢)
a= ["11 “21] |2 V2 (6.30)
ayy a2

1 1
H-20)  L(1+2)
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The relations among the components of the eigenvectors are different than in the
previous example. Here a1 = —agy) is slightly less than 1 /ﬁ while gy = ay is
slightly greater than 1/+/2.

The preceding approximations looked at the behavior of the eigenvalues and
eigenvectors in limiting cases. The qualitative changes in these quantities as a
function of Vy3/(Vit — Va2) from zero to three are shown in Fig. 6.2. We shall
return to this example after considering the general problem of multiple roots of
the eigenvalue equation (6.26').

o

1. Ay
it T
2
N 1] ]
> 12
» }'1
4, 0
A
\ _l
2
-1
- 2
1 2 3 -1 1 2 3
Vs Via
Vii = Vo Vin— Vp

(@ (b)

FIGURE 6.2 Behavior of the (a) eigenvalues and (b) eigenvector components as the
energy ratio V[TVE‘V_zz changes from 0 to 3.

It remains only to consider the case of multiple roots to the secular equation,
a situation that is more annoying in the mathematical theory than it is in practice.
If one or more of the roots is repeated, it 1s found that the number of independent
equations among the eigenvalues is insufficient to determine even the ratio of the
eigenvector components. Thus, if the eigenvalue A is a double root. any two of the
components g, may be chosen arbitrarily, the rest being fixed by the eigenvalue
equations.

In general, any pair of eigenvectors randomly chosen out of the infinite set of
allowed vectors will not be orthogonal. Nevertheless, it is always possible to con-
struct a pair of allowed vectors that are orthogonal, and these can be used to form
the orthogonal matrix A. Consider for simplicity the procedure to be followed
for a double root. Let a; and a; be any two allowable eignenvectors for a given
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double root A, which have been normalized so as to satisfy Eq. (6.22b). Any linear
combination of a, and a; will also be an eigenvector for the root A. We therefore
seek to construct a vector @y,

a = cia;, + coay, (631)

where ¢) and ¢ are constants such that a; is orthogonal to a;. The orthogonzlity
condition, Eq. (6.22a), then requires that

51Ta;‘ =c) + (‘25;1'&;‘ =0,

where use has been made of the normalization of a; . It therefore follows that the
ratio of ¢ to ¢z must be given by

¢ ~f ]

= _aTay = —1. (632)

2

We can illustrate these ideas by again considering our two-dimensional

example given by Eqs (6.27) through (6.30). The two limiting cases of the
off-diagonal potential term Vj,, being much less than and much greater than
the difference factor (Vi — Va2), provide an excellent example of the problems
introduced by degeneracy. When

Vii=Vn=W, Va2=0

the two eigenvalues become the same, A; = Ay = V.
If the limt is taken by letting V2 — O first and then taking the limit
(Vi1 = V»2), the eigenvectors in Egs. (6.28) become

a = ((1)) and  ap = (?) (6.33)

If the limit is taken in the reverse order, Egs. (6.30) give

bi={7| ad b= Y] (634)

V2 V2

where b is used for the eigenvectors in Egs. (6.34) to avoid confusion with the
eigenvectors in Eqs. (6.33). Each of the eigenvectors in (6.33) and (6.34) are linear
combinations of the other set of eigenvectors. For example,

1 1
by = — az), and bz = —(ap —ay),
1 ﬁ(al'!' 2) 2 ﬁ( 2 —a1)

so either set of eigenvectors is a linear combination of the other, as was discussed
in this section. These results obviously generalize to the infinite set

w=(5) wa m=(7).
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where a and b are any pairs of numbers that satisfy
a+b =1

This shows that there is an infinite set of possible eigenvectors 1n the case of
degeneracy.

There is another way to consider the significance of these results. The approx-
imate eigenvectors in Eqgs. (6.28) are for the case where the main potential energy
terms are V) and Vs, which are at diagonal positions, and the V), are in the off-
diagonal positions. If we take the eigenvectors of Eq. (6.30) in the limit ¢ — 0
and let the eigenvectors of Egs. (6.30) transform V as V' = AVA, we obtain the
transformed potential energy tensor

V= v+ v + Vv i(vii—va)
v =) TV + Vag) — Vi

in which the difference term (V;; — Vp2) 18 off-diagonal. Thus, the set of eigenvec-
tors given by Egs. (6.30) are for the physical situation in which the small energy
term (V1 — Vip) is off-diagonal.

Returning to the main discussion, the requirement that a; of Eq. (6.32) be not-
malized provides another condition on the two coefficients, which in terms of t;
defined by Eq. (6.32) takes the form

aTa;=1= C% + c% + 2c1¢27].

Together the two equations fix the coefficients ¢; and ¢2, and therefore the vector
a;. Both a; and a;, = a; are automatically orthogonal to the eigenvectors of the
other distinct eigenvalues, for then the argument based on Eq. (6.17') remains
valid Hence, we have a set of n eigenvectors a j whose components form the
matrix A satisfying Eq. (6.23).

A similar procedure is followed for a root of higher multiplicity. If A is an
m-fold root, then orthogonal normalized eigenvectors are formed out of linear
combinations of any of the m corresponding eigenvectors a'l, ..., a,,. The first of
the “orthonormal” eigevectors a; is then chosen as a multiple of a|; a; is taken
as a linear combination of a’1 and 3’2; and so on. In this manner, the numnber of
constants to be determined is equal to the sum of the first m integers, or %m(m—l).
The normalization requirements provide m conditions, while there are %m(m -1
orthogonality conditions, and together these are just enough to fix the constants
uniquely.

This processes of constructing orthogonalized eigenvectors in the case of mul-
tiple roots is completely analogous to the Gram-Schmidt method of constructing
a sequence of orthogonal functions out of any arbitrary set of functions. Phrased
in geometrical language, it is also seen to be identical with the procedure followed
in Chapter 5 for multiple eigenvalues of the inertia tensor. For example, the added
indeterminacy in the eigenvector components for a double root means that all of
the vectors in a plane are eigenvectors. We merely choose any two perpendicular
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directions in the plane as being the new principal axes, with the eigenvectors in A
as unit vectors along these axes.

FREQUENCIES OF FREE VIBRATION, AND NORMAL COORDINATES

The somewhat lengthy arguments of the preceding section demonstrate that the
equations of motion will be satisfied by an oscillatory solution of the form (6.11),
not merely for one frequency but in general for a set of n frequencies wy. A com-
plete solution of the equations of motion therefore involves a superposition of
oscillations with all the allowed frequencies. Thus, if the system is displaced
slightly from equilibrium and then released, the system performs small oscilla-
tions about the equilibrium with the frequencies wy, . .., @, The solutions of the
secular equation are therefore often designated as the frequencies of free vibration
or as the resonant frequencies of the system.

The general solution of the equations of motion may now be written as a sum-
mation over an index k:

m = Crajre” ¥, (6.35)

there being a complex scale factor Cy for each resonant frequency. It might be
objected that for each solution A; of the secular equation there are two resonant
frequencies 4wy and —wy. The eigenvector a; would be the same for the two
frequencies, but the scale factors C,'c" and C could conceivably be different. On
this basis, the general solution should appear as

= ay(CFet' ™ 4 Cee), (6.35")

Recall however that the actual motion is the real part of the complex solution, and
the real part of either (6.35) or (6.35) can be written in the form

m = fra costaxt + &), (6.36)

where the amplitude f; and the phase §; are determined form the initial condi-
tions. Either of the solutions ((6.35) and (6.36)) will therefore represent the actual
motion, and the former of course is the more convenient.

The orthogonality properties of A greatly facilitate the determination of the
scale factors Cy in terms of the initial conditions. At ¢+ = 0, the real part of
Eq. (6.35) reduces to

ni(0) = Re Crayy, (6.37)

where Re stands for “real part of” Similarly, the initial value of the velocities is
obtained as

17 (0) = Im Cra,rox, (6.38)
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where Im Cy, denotes the imaginary part of C;. From these 2n equations, the real
and imaginary parts of the # constants C; may be evaluated. To solve Eq. (6.37),
for example, let us first write it in terms of column matrices 1(0) and C:

7(0) = ARe C. (6.37)

If we multiply by AT from the left and use Eq. (6.23), we immediately obtamn a
solution for Re C:

Re C = ATy(0).
or, taking the /th component,
Re C = a,iTyenk (0). (6.39)

A simular procedure leads to the imaginary part of the scale factors as*
1
Im C[ = — a-,T ]J}k(O) (64-0)
o JZ; Jtd;

Equations (6.39) and (6.40) thus permit the direct computation of the complex
factors Cy (and therefore the amplitudes and phases) in terms of the initial condi-
tions and the mattices T and A.

The solution for eac coordinate, Eq. (6.35), is in general a sum of simple
harmonic oscillations in all of the frequencies wy satisfying the secular equation,
Unless it happens that all of the frequencies are commensurable, that is, rational
fractions of each other, 7; never repeats its initial value and is therefore not itself a
periodic function of time. However, it is possible to transform from the #; to a new
set ol generalized coordinates that are all simple periodic functions ot time—a set
of variables known as the nermal coordinates.

We define a new set of coordinates ¢ !

m = ai;{y, (6.41)
or, in terms of single column matrices 0 and £,
n=A{. (6.41")
The potential energy, Eq. (6.4), is written in matrix notation as
V = 1iiVa. (6.42)
Now, the single-row transpose matrix 7 is related to Z by the equation
7=AL=A,

*The summation over j and & 15 shown explicitly because there 15 no surmation over the repeated
subscript /
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so that the potential energy can be written also as
V = 1ZAVAL.

But A diagonalizes V by a congruence transformation (cf. Eq. (6.26)), and the
potential energy therefore reduces simply to

Vv =1iaL = Lok (6.43)

The kinetic energy has an even simpler form in the new coordinates. Since the
velocities transform as the coordinates, T as given in Eq. (6.20) transforms to

T = 1[ATA{

which by virtue of Eq. (6.23) reduces to
T= %{L’ = %élfr- (6.44)
Equations (6.43) and (6.44) state that in the new coordinates both the potential
and kinetic energies are sums of squares only, without any cross terms. Of course,
this result is simply another way of saying that A produces a principal axis trans-
formation. Recall that the principal axis transformation of the inertia tensor was
specifically designed to reduce the moment of inertia to a sum of squares; the new
axes being the principal axes of the inertia ellipsoid. Here the kinetic and potential
energies are also quadratic forms (as was the moment of inertia) and both are di-
agonalized by A. For this reason, the principal axis transformation employed here
is a particular example of the well-known algebraic process of the simultaneous

diagonalization of two quadratic forms.

The equations of motion share in the simplification resulting from their use.
The new Lagrangian is

L =1 - olt) (6.45)
so that the Lagrange equations for ¢; are
& + e = 0. (6.46)
Equations (6.47) have the immediate solutions
Lk = Cre™' ™% (6.47)

which could have been seen of course directly from Egs. (6.35) and (6.41). Each
of the new coordinates is thus a simply periodic function involving only one of
the resonant frequencies. As mentioned earlier, it is therefore customary to call
the ¢’s the normal coordinates of the system.

Each normal coordinate corresponds to a vibration of the system with only one
frequency, and these component oscillations are spoken of as the normal modes
of vibration. All of the particles in each mode vibrate with the same frequency
and with the same phase;* the relative amplitudes being determined by the matrix

=Particles may be exactly out of phase 1t the «’s have opposite sign
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elements a;;. The complete motion is then built up out of the sum of the normal
modes weighted with appropriate amplitude and phase factors contained in the
Cy’s.

Harmonics of the fundamental frequencies are absent in the complete motion
essentially because of the stipulation that the amplitude of oscillation be small.
We are then allowed to represent the potential as a quadratic form, which is char-
acteristic of simple harmonic motion. The normal coordinate transformation em-
phasizes this point. for the Lagrangian in the normal coordinates (6.45) is seen
to be the sum of the Lagrangians for harmonic oscillators of frequencies wy. We
can thus consider the complete motion for small oscillations as being obtained by
exciting the various harmonic oscillators with different intensities and phases.*

FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE

To illustrate the technique for obtaining the resonant frequencies and normal
modes, we shall consider in detail a model based on a linear symmetrical tri-
atomic molecule. In the equilibrium configuration of the molecule, two atoms
of mass m are symmetrically located on each side of an atom of mass M (cf.
Fig. 6.3). All three atoms are on one straight line, the equilibrinm distances apart
being denoted by b. For simplicity, we shall first consider only vibrations along
the line of the molecule, and the actual complicated interatomic potential will be
approximated by two springs of force constant k joining the three atoms. There
are three obvious coordinates marking the position of the three atoms on the line.
In these coordinates, the potential energy is

V= g(xz —x—b)?+ gm —x — b (6.48)
We now introduce coordinates relative to the equilibrium positions:
M =X — X
where

x02 — X01 = b = xp3 — X02.

m M m
~BEOTI BB 000
x, b X, b x3

FIGURE 6.3 Model of a lineur symmetrical triatomic molecule.

*Note for future reference that the same sort of picture appears 1n the quantization of the electromag-
netic field. The frequencies of the harmome oscillators are 1dentified with the photon frequencies, and
the amplitudes of excitation become the discrete quantized “occupation numbers”—the number of
photons of each frequency.
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The potential energy then reduces to

k k
V=<2 _ 2 ad _ 2,
2(712 m)- + 2(773 72)
or
k
V= 5(17% +29% + n% —2n1m — 2mms).

Hence, the V tensor has the form

k -k 0
V=|-kt 2k —k
0 ~k &

The kinetic energy has an even simpler form:
m M
7" .2 .2 Moo
2 (m + n3) + >

so that the T tensor is diagonal:

m O 0
T=1{0 M O
0 0 m

Combining these two tensors, the secular equation appears as

k—o*m —k 0
IV—e?T|=| -k 2k—o*M  —k
0 -k k — w?m

Direct evaluation of the determinant leads to the cubic equation in w

w?(k — w*m)(k(M + 2m) — @*Mm) =0,

with the obvious sclutions

| k 2

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

The first eigenvalue, w1 = 0, may appear somewhat surprising and even alarm-
ing at first sight. Such a solution does not correspond to an oscillatory motion at

all, for the equation of motion for the corresponding normal coordinate is

£ =0,

which produces a uniform translational motion. But this is precisely the key to
the difficulty. The vanishing frequency arises from the fact that the molecule
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may be translated rigidly along its axis without any change in the potential en-
ergy, an example of neutral equilibrium mentioned previously. Since the restoring
force against such motion is zero, the effective “frequency” must also vanish.
We have made the assumption that the molecule has three degrees of freedom
for vibrational motion, whereas in reality one of them is a rigid body degree of
freedom.

A number of interesting points can be discussed in connection with a vanishing
resonant frequency. It is seen from Eq. (6.21) that a zero value of @ can occur
only when the potential energy is positive but is not positive definite; that is, it
can vanish even when not all the »,’s are zero. An examination of V, Eq. (6.49),
shows that it is not positive definite and that V does in fact vanish when all the
n’s are equal (uniform translation).

Since the zero frequency found here is of no consequence for the vibration
frequencies of interest, it is often desirable to phrase the problem so that the root
is eliminated from the outset. We can do this here most simply by imposing the
condition or constraint that the center of mass remain stationary at the origin:

m(x1 +x3) + Mx; =0. (6.56)

Equation (6.56) can then be used to eliminate one of the coordinates from V and
T, reducing the problem to one of two degrees of freedom (cf. Derivation 1, this
chapter).

The restriction of the motion to be along the molecular axis allows only one
possible type of uniform rigid body motion. However, if the more general problem
of vibrations in all three directions is considered, the number of rigid body degrees
of freedom will be increased to six. The molecule may then transiate uniformly
along the three axes or perform uniform rotations about the axes. Hence, in any
general system of n degrees of freedom, there will be six vanishing frequencies
and only n — 6 true vibration frequencies. Again, the reduction in the number of
degrees of freedom can be performed beforehand by imposing the conservation
of linear and angular momentum upon the coordinates.

In addition to rigid body motion, it has been pointed out that zero resonant
frequencies may also arise when the potential is such that both the first and second
derivatives of V vanish at equilibrium, Small oscillations may still be possible in
this case if the fourth derivatives do not also vanish (the third derivatives must
vanish for a stable equilibrium), but the vibrations will not be simple harmonic.
Such a situation therefore constitutes a breakdown of the customary method of
small oscillations, but fortunately it is not of frequent occurrence.

Returning now to the examination of the resonant frequencies, w, will be rec-
ognized as the well-known frequency of oscillation for a mass m suspended by a
spring of force constant k. We are therefore led to expect that only the end atoms
partake in this vibration; the center molecule remains stationary. It is only in the
third mode of vibration, w3, that the mass M can participate in the oscillatory mo-
tion. These predictions are verified by exarmining the eigenvectors for the three
normal modes.
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The components a;; are determined for each frequency by the equations
(k — wfm)m J —kay,; =0
—kay; + (2k — &> M)ay, —kaz; = 0 (6.57a)
—kay, + (k — w?m)az, = 0,
along with the normalization condition:
m(a;, +a3,) + MaZ, = 1. (6.57b)

For ) = 0, it follows immediately from the first and third of Egs. (6.57a) that all
three coefficients are equal: ai; = az; = as;. This of course is exactly what was
expected form the translational nature of the motion (cf. Fig. 6.4a). The normal-
ization condition then fixes the value of a1, so that

1 1 1
—_—_ = —, 43 = —.
Sm+Mm T fmam P mi M
The factors (k — w%m) vanish for the second mode, and Eqs. (6.57a) show imme-

diately that ay; = 0 (as predicted) and a3 = —a32. The numerical value of these
quantities is then determined by Eq. (6.57b):

(6.58a)

ai =

1 1
aps »\/ﬂ’ ap =0, ap= \/Z_m (6.58b)
In this mode the center atom is at rest, while the two outer ones vibrate exactly
out of phase (as they must in order to conserve linear momentum) (cf. Fig. 6.4b).
Finally, when @ = ws, it can be seen from the first and third of Egs. (6.57a) that
a3 and a33 must be equal. The rest of the calculation for this mode is not quite as
simple as for the others, and it will be sufficient to state the final resuit:

1 -2 1
a3 = ————, a3 = T ap = ————.
2m (1+22) 2M 2+ 4) f2m (1+ %)
(6.58¢)
— gl

(c)
FIGURE 64 Longitudinal normal modes of the linear symmelric triatomic molecule
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Here the two outer atoms vibrate with the same amplitude, while the inner one
oscillates out of phase with them and has a different amplitude, (cf. Fig. 6.4¢c.)
The normal coordinates may be found by inverting Eq. (6.41) as

§1=\/——(\/_771+\/—n2+~/—773)

2= \/_ (m — n3) (6.59)
1 M
3= m l:\/;(m +m3) — mﬂz] .

These normal modes describe each of the behaviors shown on Fig. 6.4. Any gen-
eral longitudinal vibration of the molecule that does not involve a tigid translation
will be some linear combination of the normal modes w; and ws. The amplitudes
of the normal modes, and their phases relative to each other, will of course be
determined by the initial conditions (cf. Exercise 5).

We have spoken so far only of vibrations along the axis; in the actual molecule
there will also be normal modes of vibration perpendicular to the axis. The com-
plete set of normal modes is naturally more difficult to determine than merely the
longitudinal modes, for the general motion in all directions corresponds to nine
degrees of freedom. While the procedure is straightforward, the algebra rapidly
becomes quite complicated, and it is not feasible to present the detailed calcula-
tion here. However, it is possible to give a qualitative discussion on the basis of
general principles, and most of the conclusions of the complete solution can be
predicted beforehand.

The general problem will have a number of zero resonant frequencies cor-
responding to the possibility of rigid body motion. For a molecule with n atomns
there are 3n degrees of freedom. Subtracting the three translational and three rigid
rotational degrees of freedom, there will be in general 3n — 6 vibrational modes.
For the linear molecule, there will be three degrees of freedom for rigid trans-
lation, but rigid rotation can account for only two degrees of freedom. Rotation
about the axis of the molecule is obviously meaningless and will not appear as a
mode of rigid body motion. We are therefore left with four true modes of vibra-
tion. Two of these are the longitudinal modes, which have already been examined
so that there can only be two modes of vibration perpendicular to the axis. How-
ever, the symmetry of the molecule about its axis shows that these two modes
of perpendicular vibration must be degenerate. There is nothing to distinguish a
vibration in the y direction from a vibration in the z direction, and the two fre-
quencies must be equal.

The additional indeterminacy of the eigenvectors of a degenerate mode appears
here, in that all directions perpendicular to the molecular axis are alike. Any two
orthogonal axes in the plane normal to the molecule may be chosen as the direc-
tions of the degenerate modes of vibration. The complete motion of the atoms
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normal to the molecular axis will depend upon the amplitudes and relative phases
of the two degenerate modes. If both are excited, and they are exactly in phase,
then the atoms will move on a straight line passing through the equilibrium con-
figuration. But if they are out of phase, the composite motion is an elliptical Lis-
sajous figure, exactly as in a two-dimensional isotropic oscillator. The two modes
then represent a rotation, rather than a vibration.

It is obvious from the symmetry of the molecules that the amplitudes of the end
atoms must be identical in magnitude. The complete calculation shows that the
end atoms also travel in the same direction along the Lissajous figure. Hence, the
center atom must revolve in the opposite direction, in order to conserve angular
momentum. Figure 6.5 illustrates the motion for the two degenerate modes when
they are 90° out of phase.

As the complexity of the molecule increases, the size of the secular deter-
minant becomes very large, and finding the normal frequencies and amplitudes
becomes a problem of considerable magnitude. We have seen however that even
in a situation as simple as the linear triatomic molecule, a study of the symmetries
to be expected in the vibrations greatly simplifies the calculations. Considerable
mathematical ingenuity has been devoted to exploiting the symmetries inherent
in complex molecules to reduce the labor involved in finding their vibration fre-
quencies. The theory of symmetry groups has been applied with great success in
tactoring the large secular determinant into smaller blocks that may be diagonal-
ized separately. It has been pointed out however that such elaborate mathematical
manipulation was more appropriate in a time when numerical computations were
difficult and tedious. Considering the speed and memory capacity of present-day
computers, a straightforward approach may be easier and more accurate in the
long run. Fast and accurate routines for solving the eigenvalue problems of large
matrices are the stock-in-trade today of scientific computers of even moderate
size. There has therefore been a trend toward a more brute-force approach in
which mass-weighted Cartesian coordinates (see p. 241) are used to formulate
the problem. The kinetic energy ellipsoid for the molecular vibrations is then
already a sphere, and finding the normal modes reduces to diagonalizing the po-
tential energy. These approaches are extensively applied in infrared and Raman
spectroscopy.

AR A
./ Y U

FIGURE 6.5 Degenerate modes of the symmetrical triatomic molecufe.
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FORCED VIBRATIONS AND THE EFFECT OF DISSIPATIVE FORCES

Free vibrations occur when the system is displaced initially from its equilibrium
configuration and is then allowed to oscillate by itself. Very often, however, the
system is set into oscillation by an external driving force that continues to act on
the system after r = 0. The frequency of such a forced oscillation is then deter-
mined by the frequency of the driving force and not by the resonant frequencies.
Nevertheless. the normal modes are of great importance in obtaining the ampli-
tudes of the forced vibration, and the problem is greatly simplified by use of the
normal coordinates obtained from the free modes.

If F; is the generalized force corresponding to the coordinate 7, then by
Eq. (1.49) the generalized force O, for the normal coordinate {; is

Q, = aj F_; : (6.60)
The equations of motion when expressed in normal coordinates now become
Gt oft =0 (6.61)

Equations (6.61) are a set of n inhomogeneous differential equations that can be
solved only when we know the dependence of @, on time. While the solution
will not be as simple as in the free case, note that the normal coordinates preserve
their advantage of separating the variables, and each equation involves only a
single coordinate.

Frequently, the driving force varies sinusoidally with time. In an acoustic prob-
lem, for example, the driving force might arise from the pressure of a sound wave
impinging on the system, and Q; then has the same frequency as the sound wave.
Or, if the system is a polyatomic molecule, a sinusoidal driving force is present
if the molecule is illuminated by a monochromatic light beam. Each atom in the
molecule is then subject to an electromagnetic force whose frequency is that of
the incident light. Even where the driving force is not sinusoidal with a single fre-
quency, it can often be considered as built up as a superposition of such sinusoidal
terms. Thus, if the driving force is periodic, it can be represented by a Fourier se-
ries; other times, a Fourier integral representation is suitable. Since Eqs. (6.61)
are linear equations, its solutions for particular frequencies can be superposed to
find the complete solution for given Q,.

Tt is therefore of general interest to study the nature of the oscillations when
the force Q, can be written as

Q; = Qq; cos{wt + §,), (6.62)

where w is the angular frequency of an external force. The equations of motion
now appear as

E, + a)lzg', = Qq, cos{wt + §,). (6.63)
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A complete solution of Eq. (6.63) consists of the general solution to the homo-
geneous equation (that is, the free modes of vibration) plus a particular solution
to the inhomogeneous equation. By a proper choice of initial conditions, the su-
perimposed free vibrations can be made to vanish,* centering our interest on the
particular solution of Eqgs. (6.63) that will obviously have the form

& = B, cos(wr + §,). (6.64)

Here the amplitudes B, are determined by substituting the solution in Eqs. (6.63):

B = ——rr0. (6.65)

The complete motion is then

ay Qo, cos(wt 4 6,)

6.66
w? — w? (0.68)

n,=apg =

Thus, the vibration of each particle is again composed of linear combinations of
the normal modes, but now each normal oscillation occurs at the frequency of the
driving force.

Two factors determine the extent to which each normal mode is excited. One
is the amplitude of the generalized driving force, Qg;. If the force on each particle
has no component in the direction of vibration of some particular normal mode,
then obviously the generalized force corresponding to the mode will vanish and
Qo. will be zero. Ar external force can excite a normal mode only if it tends to
maove the particles in the same direction as in the given mode. The second factor is
the closeness of the driving frequency to the free frequency of the mode. As a con-
sequence of the denominators in Eq. (6.66), the closer w approaches to any w;, the
stronger will that mode be excited relative to the other modes. Indeed, Eq. (6.66)
apparently predicts infinite amplitude when the driving frequency agrees exactly
with one of the w,’s— the familiar phenomenon of resonance. Actually, of course,
the theory behind Eq. (6.66) presumes only small oscillations about equilibrium
positions; when the amplitude predicted by the formula becomes large, this as-
sumption breaks down and Eq. (6.66) is then no longer valid. Note that the os-
cillations are in phase with the driving force when the frequency is less than the
resonant frequency, but that there is a phase change of x in going through the
resonance.

Our discussion has been unrealistic in that the absence of dissipative or fric-
tional forces has been assumed. In many physical systems, these forces, when
present, are proportional to the particle velocities and can therefore be derived

*The free vibrations arc essentially the transients generated by the apphication of the driving torces
If we consider the system to be initially in an equilibrimn configuration, and then slowly build up
the dniving forces from zero, these transients will not appear. Alternatively, dissipative forces can be
assumed present (see pages following) that will damp out the free vibrations
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from a dissipation function F (cf. Section 1.5). Let us first consider the effects of
frictional forces on the free modes of vibration.

From its definition. F must be a homogeneous quadratic function of the veloc-
ities:

F = 3 Fijinty. (6.67)

The coefficients F;; are clearly symmetric, 7,, = F;,, and in general will be
functions of the coordinates. Since we are concerned with only small vibrations
about equilibrium, it is sufficient to expand the coefficients about equilibrium and
retain only the first, constant term, exactly as was done for the kinetic energy.
In future applications of Eq. (6.67), we shall take F,; as denoting these constant
factors. Recall that 2F is the rate of energy dissipation due to the frictional forces
(cf. Eq. (2.60)). The dissipation function F therefore can never be negative. The
complete set of Lagrange equations of motion now become (cf. Section 1.5)

Tyn; + Fyny + Vigny =0. (6.68)

Clearly in order to find normal coordinates for which the equations of motion
would be decoupled, it is necessary to find a principal axis transformation that
simultaneously diagonalizes the three quadratic forms 7', V, and . As was shown
above, this is not in general possible; normal modes cannot usually be found for
any arbitrary dissipation function.

There are however some exceptional cases when simultaneous diagonalization
is possible. For example, if the frictional force 1s proportional both to the particle’s
velocity and its mass, then F will be diagonal whenever T is. When such simul-
taneous diagonalization is feasible, then the equations of motion are decoupled in
the normal coordinates with the form

4o+ F é"; + w,zg, = 0. (no summation) (6.69)
Here the 7, s are the nonnegative coefficients in the diagonalized form of 7 when
expressed in terms of {,. Being a set of linear differential equations with constant
coefficients, Eqs. (6.69) may be solved by functions of the form
&= C,e“"”:',
where ] satisfies the quadratic equation
w, L, wiF, —w? =0. (nosummation) (6.70)

Equation (6.70) has the two solutions

|, 2
o =% wf—j—i%. (6.71)
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The motion is therefore not a pure oscillation, for @’ is complex. It is seen from
Eq. (6.71) that the imaginary part of ] results in a factor exp(—F,1/2), and by
reason of the nonnegative nature of of the F,’s, this is always an exponentially
decreasing function of time.* The presence of a damping factor due to the friction
is hardly unexpected. As the particles vibrate, they do work against the frictional
forces, and the energy of the system (and hence the vibration amplitudes) must
decrease with time. The real part of Eq. (6.71) corresponds to the oscillatory factor
in the motion; note that the presence of friction also affects the frequency of the
vibration. However, if the dissipation is small, the squared term in 7, may be
neglected, and the frequency of oscillation reduces to the friction-free value. The
complete motion is then simply an exponential damping of the free modes of
vibration:

G = Ce Tt 21t (6.72)

if the dissipation function cannot be diagonalized along with T and V, the
solution is much more difficult to obtain. The general nature of the solution re-
mains pretty much the same, however: an exponential damping factor times an
oscillatory exponential function. Suppose we seek a solution to Eqgs. (6.68) of the
form

tar

n, = Ca,e™ = Ca,e e 27V, (6.73)

With this solution, Egs. (6.68) become a set of simultaneous linear equations
V,ja, — ioF,ja; — ?*Ta, = 0. (6.74)
It is convenient to write w as iy, so that
Yy =—iw=—Kk — 2niv, (6.75)

and thus —« is the real part of . In terms of the square tensors of V, T, and F,
the set of equations (6.74) become a column matrix equation involving y:

Va+yFa+y’Ta=0. (6.76)

The set of homogeneous equations (6.74) or (6.76) can be solved for the a, only
for certain values of @ or y.

Without actually evaluating the corresponding secular equation, we can show
that « must always be nonnegative. Convert the matrix equation (6.76) into a
scalar equation for y by multiplying from the left with a':

a'Va+ya'Fa+yZa'Ta=0. 6.77)

*Some (but not all) F, ’s may be zero, which simply means there are no frictional effects in the corre-
spending normal modes. The important point is that the 7, ’s cannot be negative
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Equation (6.77) is a quadratic equation for y with coefficients that are matrix
products of the same general type as those encountered in Eq. (6.19). By virtue
of the symmetry of V, F, and T, the matrix products are all real, as can be seen by
expanding a as & + i (cf. Eq. (6.19)). Hence, if ¥ is a solution of the quadratic
equation, its complex conjugate y* must also be a solution. Now, the sum of the
two roots of a quadratic equation is the negative of the coefficient of the linear
term divided by the coefficient of the square term

a'Fa
* _—— I e c—r— .
A (6.78)

Hence, « can be expressed in terms of the real and imaginary parts of a; as

‘= 1 Fy(ea; + BiBj)
2 Tuloxon + BiBr)

(6.79)

The dissipation function 7 must always be positive, and T is positive definite;
hence « cannot be negative. The oscillations of the system may decrease exponen-
tially with time, but they can never increase with time. Note that if F is positive
definite, « must be different from zero (and positive), and all modes will have an
exponential damping factor. The frequencies of oscillation. given by the real part
of w, will of course be affected by the dissipative forces, but the change will be
small if the damping is not very large during a period of oscillation.

Finally, we may consider forced sinusoidal oscillations in the presence of dis-
sipative forces. Representing the variation of the driving force with time by

F, = Fo;e”",
where Fg, may be complex, the equations of motion are
Vynj + Fijny + Tyt = Fae'™. (6.80)
If we seek a particular solution to these equations of the form
ny = AT,

we obtain the following set of inhomogeneous linear equations for the amplitudes
A «
J >

(V,, —iwF, — o*T,))A; — Fo, = 0. (6.81)

The solution to these equations* may easily be obtained from Cramer’s rule:

_ Dj(w)

= (6.82)

*They are of course merely the inhomogeneous version of Eqs. (6 74)



264

Chapter 6 Oscillations

where D(w) is the determinant of the coefficients of A ; in Eq. (6.8]) and
D, (w) is the modification in D(w) resulting when the jth column is replaced
by Fo1 ... Fon. It is the denominator D(w) that is of principal interest to us here,
for the resonances arise essentially out of the algebraic form of the denominator.
Now. D is the determinant appearing in the secular equation corresponding to the
homogeneous equations (6.74); its roots are the complex frequencies of the free
modes of vibration. The requirement that both y and y* are roots of Eq. (6.77)
means, on the basis of Eq. (6.75), that if e, is a root of D(w), then —w} is a Toot.
For a system of n degrees of freedom, it is therefore possible to represent D(w)
as

Dw)=GCGw—-eN@—mm)...(wo—w)w+ o) (@+wr)... (w+ao)),

where G is some constant. Using product notation, and denoting @ by 2z v, this
representation can be written as

D@) =G []@rw—v)+in) @rw+v) +ik). (6.83)

1=l

When we rationalize Eq. (6.83) to separate A, into its real and imaginary parts,
the denominator will be

D*(w)D(w) = GG* [ [t4r?(v — v)? + kD (@r(w + v)* +x).  (6.84)

=1

The amplitudes of the forced oscillation thus exhibit typical resonance behav-
ior in the neighborhood of the frequencies of free oscillations +v,. As a result of
the presence of the damping constants «,, the resonance denominators no longer
vanish at the free mode frequencies, and the amplitudes remain finite. The driving
frequency at which the amplitude peaks is no longer exactly at the free frequencies
because of frequency dependence of terms in A; other than the particular reso-
nance denominator. However, so long as the damping is small enough to preserve
a recognizable resonant peak, the shift in the resonance frequencies is usually
small.

We have discussed the properties of small oscillations solely in terms of me-
chanical systems. The reader however has undoubtedly noticed the similarity
with the theoty of the oscillations of electrical networks. The equations of mo-
tion (6.68) become the circuit equations for 2 coupled circuits if we read the V,,
coefficients as reciprocal capacitances, the J;;'s as resistances, and the T, ’s as
inductances. Driving forces are replaced by generators of frequency w applied to
one or more of the circuits, and the equations of forced vibration (6.80) reduce to
the electrical circuit equations (2.42) mentioned in Chapter 2.

We have presented here only a fraction of the techniques that have been devised
for handling small oscillations, and of the general theorems about the motion. For
example, space does not permit a discussion of the powerful Laplace transform
techniques to study the response of a linearly oscillating system to driving forces
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with arbitrary time dependencies. Nor is it appropriate here to fully consider the
extensive subject of nonlinear oscillations, where the potential energy contains
terms beyond the quadratic, and the motion is no longer simple harmonic. (Some
relevant portions of this field will be introduced later when we treat chaos and
perturbation theory). As mentioned earlier, a formal development of the theory
of small oscillations about steady motion will be given later in connection with
the Hamiltonian version of mechanics. Another generalization that will deserve
our attention relates to the oscillation of systems with continuously infinite num-
bers of degrees of freedom. The question is how we can construct a way of han-
dling continuous systems that is analogous to the classical mechanics of discrete
systems. We shall postpone such considerations of continuous systems to Chap-
ter 13—after we have developed the canonical formulation of discrete mechanics,
and after we have seen how the structure of Newtonian mechanics must be modi-
fied in the special theory of relativity.

BEYOND SMALL OSCILLATIONS: THE DAMPED DRIVEN PENDULUM
AND THE JOSEPHSON JUNCTION

As an example of forced vibrations with dissipative forces, we consider the mo-
tion of the pendulum sketched in Fig. 6.6, which is subjected to an applied torque
N, and is permitted to rotate through its full range of motion —7 < ¢ < n.In
addition, the pendulum is subject to damping by the viscosity n of the medium in
which it rotates. For simplicity, we will assume that the rod is massless, and that
all of the pendulum mass is concentrated at the end of the rod.

Let us begin by recalling the dynamics of a sitnple pendulum of length R and
mass m. The angular acceleration of the pendulum is produced by the restoring

TC‘
— =
O, RO Q
¢
~
61 I
] ]
l |
I ]
| | |
N=0 N=1%mgR N=mgR=N,
=0 ¢ = 30° ¢ = 90°

(a) ®) ©

FIGURE 6.6 Pendulum (a) with no applied torque, N = 0, (b) with the torque N =
%ng, and (c) with the cnitreal torque applied, N = mgR. Figures 6.6,6.8,6.10,and 6.11
are adapted from C. P. Poole, J1.. H. A. Farach and R. J. Creswick, “Superconductivity,”
Wiley, NY. 1995.
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gravitational torque mg R sin ¢ corresponding to the equation of motion

2d%¢

R
" di?

+mgRsing =0, (6.85)

where I = mR? is the moment of inertia. For small angular displacements, the
approximation sin¢ = ¢ linearizes the problem by making the torque propor-
tional to the displacement, and the motion is simple harmonic, ¢ = ¢ sin wt with
the characteristic frequency wy

g ) 172
=(= 6.86
wn = (% (6.86)
If a torque N is applied to a stationary pendulum, it will swing out through an
angle ¢. The force of gravity acting on the mass m provides the restoring torque
mg R sin ¢, as we noted above, and the pendulum assumes an equilibrium position

at the angle ¢ given by

d
N =mgRsin¢g (d—;b = O) , (6.87)
as indicated in Fig. 6.6b. The greater the torque, the larger the angle ¢. There is
a critical torque N, indicated on Fig. 6.6(c) for which the angle ¢ assumes the
values 7 /2:

N, = mgR. (6.88)

If N exceeds this critical value, then the applied torque becomes larger than the
restoring torque, N > mg R sin ¢, for all angles ¢. As a result, the pendulum will
begin to rotate beyond ¢ = m /2, and it will continue to rotate as long as the torque
N > N, is applied. The motion will take place at a variable angular speed w
d¢
0=, (6.89)
and it can persist if the torque is later removed.

With these facts in mind, let us proceed to examine the case of the damped
pendulum assuming that the damping force Fyamp = nw 18 proportional to the
angular velocity w. To write the differential equation of its motion, we add the
restoring and damping torques mg R sin ¢ and 1 d¢p/dt, respectively, to Eq. (6.85):

d’¢  d¢

— Rsing, 6.90
If we define a critical frequency w, corresponding to the angular speed at which
the damping torque new equals the critical torgue mgR,

N = mR?

N,
w = MR _ e 6.91)
n n
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then we can write the pendulum equation (6.90) in the normalized form

N  1d% 1d¢

N, w(% a2 T o di + sing. (6.92)
The solutions of this equation exhibit complex time variations of the angular po-
sition ¢ (1).

When a constant torque is applied to the pendulum at rest, there will be a initial
transient behavior that eventually settles down to a dynamic steady state after the
transients die out. We shall examine several cases of this dynamic steady state,

1. For low applied torques, N < N,, there is a static steady state
N = N;sin¢, (6.93)

in which all time derivatives vanish after the initial oscillations have died
out. This is illustrated in Fig. 6.6b with the pendulum stationary at the
angle ¢.

2. For undamped motion (n = 0) with a constant applied torque, N, Eq. (6.90)
assumes the form

. 2d%¢
torque = N —mgRsing =mR 7R (6.94)

so we see that the acting torque is angularly dependent. This torque has
special values at four particular angles:

torque = N =0 (6.95a)
torque = N — N, p=n/2 (6.95b)
torque = N p=n (6.95¢)
torque = N + N, ¢ =3rn/2 (6.95d)

If the applied torque N exceeds the critical torque N, the motion will be
continuously accelerated rotation, and the pendulum increases its energy as
time goes on. The angular speed also increases with time, but with fluctu-
ations that repeat every cycle, as indicated in Fig. 6.7. Note that Fig. 6.7
is drawn for the case where damping is present. The average over these
oscillations provides the average angular speed

d¢
={—), 6.96
(@) ( T ) (6.96)
which continually increases linearly with the time.
3. When damping is present with o, <« wy and N > N, the angular speed
w continues to increase until the damping term 7 dg/d¢ approaches the



268

Chapter & Oscillations

(/%)
(w)L- B
e = =
@ -
/
-~ {w)
v
/4
Ve
Ve
7/
tme ———»

FIGURE 6.7 Dependence of the angular velocity w = d¢/d¢ on the time for an apphed
torque N > N, The average value (w) increases linearly with time 1n the absence of
damping (hnear region), and the overall curve applies to the case w, < wq With damping,

value of the applied torque. When this occurs, the average angular speed {w)
approaches a limiting value {w) , as shown in Fig. 6.7, and the acceleration
fluctuates around an average that is zero: (d¢?/dt?} = 0. The pendulum
undergoes what is called quasi-static motion, rotating with an angular speed
o that undergoes periodic variations but always remains close to the average
{w)r.

To obtain more insight into this quasi-static behavior, we neglect the ac-
celeration term in the equation of motion (6.92), and write

N 1 do
— = — — 4 §j .97
T + sing, (6.97)

which is an equation that can be solved analytically with the solutions

{w) =0 for N < N, (6.98a)
(@) = wc[(N/N)2 - 1] forN > N, (6.98b)
(@) = (N/N)w, for N > N, (6.98¢)

which are plotted in Fig. 6.8. The actual cyclic variations in e for points
A and B on this plot are presented in Fig. 6.9. At point A, the applied
torque has the value N = 1.2N,, so from Egs. (6.95) the net torque varies
between 0.2N, and 2.2/, around the cycle, and the angular speed is fast at
the bottom and slow at the top, with the variations shown at the lower part of
Fig. 6.9. For point B, we have N = 2N, so the net torque varies between N,
and 3N, producing the more regular variations in angular speed presented
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FIGURE 6.8 Relationship between the applied torque N and the average angular veloc-
1ty {w) for we K wy. We see that {w) = 0 for N < N, and {w) increases with increasing
N > Ng.
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FIGURE 6.9 Oscillations at points A (N = 1.2N,) and B (2N,) for we < wy indicated
on Fig. 6 8 for the damped harmonic oscillator. Adapted from A. Barone and G. Paterno,
“Physics and Applications of the Josephson Effect,” Wiley, NY, 1982.
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at the top of Fig. 6.9. In the limit N 3> N, meaning {®) 3> @, the angular
speed begins to approximate a sinusoidal variation with time

w() &~ (w) + a sin ¢, (6.99)

which approximates point B in Fig. 6.8.

. For the negligible damping case (n — 0 and @, > wy), the steady-state

solution (6.98a) can still occur for N < N, with the pendulum held fixed
at the angle ¢ defined by Eq. (6.93), which means that o = {w} = 0.
In addition, the solution, (6.98c), in which the torque balances the time
averaged damping force, now applies for all values of N, both less than and
greater than N,, and so we have

w=0 for N < N, (6.100a)
() = (N/N)w, forO< N (6.100b)

These solutions are plotted in Fig. 6.10. Note from the figure that the system
exhibits hysteresis, meaning that the behavior differs for increasing and de-
creasing torques. When the torque is increased for N < N, the pendulum is
stabilized at the angle ¢ satisfying the relation N = N, sin¢ of Eq, (6.87).
so w = 0 via Eq. (6.100a). When N reaches the critical torque N, the
angular speed jumps to the value w., and then rises linearly with further
increases in N, as shown in the figure. For decreasing torques, Eq. (6.100b)
applies, and (w) remains proportional to N all the way to the origin, as
shown.

. Figure 6.8 shows the response for w, <« wy, Fig. 6.10 presents it for

we 3> wg, and the question arises as to what is the behavior for an inter-
mediate condition such as w, = wp? This requires solving the general

@, > Wy

74

NEb————— .

1 1
w, 2w,

{w)

FIGURE 6.10 Relationship between the applied torque N and the average angular ve-
loctty (@) for @ 3> wyp. There 1s hysteresis for the behavior when {0} < we.
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FIGURE 6,11 Relationship between the average angular velocity of the pendulum {w)
and the applied torque N. For low applied torques, the pendulum oscillates and the av-
erage velocity 1s zero, whereas at high torques, N > N, motion is continuous with (@)
proportional to N. Note the hysteresis for increasing and decreasing torques.

equation (6.92) since no approximations can be made. The N versus {w)
characteristic for the particular case @, = 2wy is plotted in Fig. 6.11. We
see from the figure that for increasing torques there is the usual initial rise in
N at zero frequency until the critical value N is reached, at which point the
average angular speed jumps to we, as in the w, > wy case of Fig. 6.10. For
decreasing torques, there is hysteresis with zero average frequency reached
at a torque N_, which is less than N,.

The damped-driven pendulum equation (6.92) has a particularly impottant ap-
plication in solid-state physics. When two superconductors are in close proximity
with a thin layer of insulating material between them, the arrangement consti-
tutes a Josephson junction, which has the property that electric current 7 can flow
across the junction with zero applied voltage, up to a certain critical value 7. Cur-
rent exceeding this value is accompanied by the presence of a voltage, and plots
of current I versus voltage V for the junction exhibit hysteresis. The Josephson
junction satisfies the same differential equation (6.93) as the damped oscillator
with the current playing the role of the torque, the voltage playing the role of the
average angular speed, the capacitance acting like a moment of inertia, and the
electrical conductance serving as the viscosity. The variable. which is the angle
¢ for the oscillator, becomes the phase difference i across the Josephson junc-
tion. Many physicists find it helpful to obtain an intuitive understanding of the
operation of the Josephson junction by studying properties of the damped driven
pendulum that mimics its behavior.
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DERIVATIONS

L

The problem of the linear triatomic molecule can be reduced to one of two degrees of
freedom by introducing coordinates ¥| = xp—x1, yo = x3—x2, and eliminating x5 by
requiring that the center of mass remain at rest. Obtain the frequencies of the normal
modes in these coordinates and show that they agree with the results of Section 6.4.
The distances between the atoms, y; and y,, are known as internal coordinates.

. Obtain the frequencies of longitudinal vibration of the molecule discussed in Sec-

tion 6.4, except that now the center atom is to be considered bound to the origin by a
spring of force constant k. Show that the translational mode disappears

EXERCISES

3

5.

6.

A bead of mass m 1s constrained to move on a hoop of rads R. The hoop rotates
with constant angular velocity @ around a diameter of the hoop, which 1s a vertical
axis (hnoe along which gravity acts).

(a) set up the Lagrangian and obtain the equations of motion of the bead.

(b) Find the critical angular velocity 2 below which the bottom of the hoop provides
a stable equiltbrium for the bead.

(¢) Find the stable equilibrium position for @ > Q.

Obtain the normal modes of vibration for the double pendulum shown in Fig. 1.4,
assuming equal lengths, but not equal masses. Show that when the lower mass is
small compared to the upper one, the two resonant frequencies are aimost equal. If the
pendula are set in motion by pulling the upper mass slightly away from the vertical
and then releasing 1t, show that subsequent motion is such that at regular intervals one
pendulum is at rest while the other has its maximum amplitude This is the familiar
phenomenon of “beats.”

(a) In the linear (riatomic molecule, suppose the initial condition is that the center
atom is at rest but displaced by an amount agy from equilibrium, the other two
being at their equilibrium points. Find the amplitudes of the longitudinal small
oscillations about the center of mass. Give the amplitudes of the normal modes

(b) Repeat part (a) but with the center atom initially at its equilibrium position but
with an nitial speed vy.

(a) A five-atom linear molecule 1s simulated by a configuration of masses and 1deal
springs that looks like the following diagram-

M m
000000 DUGOO000 BO000OK) DOUDOUR

1 b 2 b 3 b 4 b 5

All force constants are equal. Find the eigenfrequencies and normal modes for
longitudinal vibrations. [Hinr: Transform the coordinates 7, to £, defined by

m =17 n1=§]+§5 775=C]—_£'rl




Exercises 273

10.

11,

with symmetrical expressions for 72 and 4. The secular determinant will then
factor into determunants of lower rank.]

(b) Solve this problem using computer techniques.

In the linear triatomic molecule, suppose that motion in the v and z directions is
governed by the potentials

k k
Vy=302- i+ 53— )

k
V;;=—
2

k 2
(22— 21 + 503 —22).
Find the eigenfrequencies for small vibrations in three dimensions and describe the
normal modes, What symmetries do the zero frequencies represent? You may want to
use the kind of intermedate coordinates suggested in Exercise 6.

The equilibrium configuration of a molecule is represented by three atoms of equal
mass at the vertices of a 45° nght tnangle connected by springs of equal force con-
stant. Obtain the secular determunant for the modes of vibration n the plane and show
by rearrangement of the columns that the secular equation has a tnple root @ = 0.
Reduce the determinant to one of third rank and obtam the nonvanishing frequencies
of free vibration.

Show directly that the equations of motion of the preceding problem are sanisfied by
(a) a umform translation of all atoms along the x axis, (b) a uniform translation along
the y axis, and (¢) a uniform rotation about the z axis

(a) Three equal mass points have equilibrium positions at the vertices of an equi-
lateral triangle. They are connected by equal springs that lie along the arcs of
the circle carcumscribing the triangle. Mass points and springs are constrained to
move only on the circle. so that, for example, the potential energy of a spring 1s
determined by the arc length covered Determine the eigenfrequencies and normal
modes of small oscillations in the plane. Identify physically any zero frequencies.

(b) Suppose one of the springs has a change in force constant 34, the others remaiming
unchanged. To first order in 8%, what are the changes in the eigenfrequencies and
normal modes?

(c) Suppose what 15 changed is the mass of one of the particles by an amount §m.
Now how do the normal eigenfrequencies and normal modes change?

A uniform bar of length / and mass m 1s suspended by two equal springs of equilibrium
length & and force constant k, as shown in the diagram,

Find the normal modes of small oscillation i the plane.
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12,

13.

14.

Two particles move in one dunenston at the junction of three springs, as shown in the
figure. The springs all have unstretched lengths equal to a. and the force constants and
masses are shown

Find the eigenfrequencies and normal modes of the system.

Two mass points of equal mass i are connected to each other and to fixed points by
three equal springs of force constant k, as shown in the diagram.

The equilibrium length of each spring is a. Each mass point has a positive charge +4,
and they repel each other according to the Coulomb law. Set up the secular equation
for the cigenfrequencies.

Find expressions for the exgenfrequencies of the following electrical coupled circuit.

. If the generalized driving forces Q, are not sinusoidal, show that the forced vibrations

of the normal coordinates in the absence of damping are given by

+oe G,(®)

&= J—foo Z—u?

where G, (w) 15 the Fourier transform of Q, defined by

—lan d(l}
s

I [ +oo G ( ) —iwt d
— w)e o.
V2 J—o0 '
If the dissipation function is simultaneously diagonalized along with T and V, show
that the forced vibrations are given by

Q;(t)=

+oo G, (w)(w —w? +wF)

«/— ,/ (cul —0?)? + a)-}'z

—:w! dt
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16.

17.

18.

19.

20.

21.

22

23.

which has the typical resonance denominator form, These results are simple illus-
trations of the powerful technique of the operational calcuius for handling transient
vibrations.

A mass particle moves 1n a constant vertical gravitational field along the curve defined
byy = ax*, where ¥y is the vertical direction. Find the equation of motion for small
oscillations about the position of equilibrium.

A plane triatomic molecule consists of equal masses m at vertices of an equilateral

tnangle of sides a. Assume the molecule is held together by forces that are harmonic

for small oscillations and that the force constants are 1dentical and equal to k. Allow

motion only in the plane of the molecule.

(a) Without writing the equations of motion, justify your reasoning on the number of
normal modes of the system and how many of these modes have zero frequency.

(b) One of the normal modes corresponds to a symmetrical stretching of all three
vertices of the molecule. Find the frequency of this mode.

A particle in an isotropic three-dimensional harmonic oscillator potential has a natural
frequency of wp. Assume the particle is charged and that crossed static electric and
magnetic fields are applied. Find the vibration frequencies with these electromagnetic
fields present. Discuss the results for the lumuts of strong and weak fields.

Show for the case V11 > Vp3 > 0and V2 = V3 = 0in Eq. (6.27) that there are two
normal modes with frequencies w; = (V;;)1/2 and wy = (Vop)lf 2 Reintroduce the
mass factor m and describe a physical system that would show this behavior for small
oscillations.

Write the Lagrangian for the case Vi3 = Vo = 0and V}3 = V1 > 0 for the example
discussed in Eqgs. (6.27) to (6.30). Show there is one normal mode of simple harmonic
motion with the frequency w; = (V12)!/2, and a second mode in which the particle
1s unbound, receding exponentially to infinity for long time r > v in accordance with
the expression ¢~*/T_ where the parameter v is given by 7 = (V]g)_llz. For this
unbounded mode, how does the distance depend upon time when ¢ < ? What is the
nature of the pomt x; = x, = 07 Restate your results with the mass parameter m
included explicitly.

Write the Lagrangran discussed in Eqs. (6.27) to (6.30) in polar coordinates for the
case V1] = Vo3 > 0and Vo = Vp1 =0, Show that there 1s a radial normal mode r =
rocos(ewt) with frequency w = (V11)'/2 when the angular momentum is zero. Show
that in the case of nonzero angular momentum, the angular momentum is conserved
and the particle can no longer reach r = 0. Write the fictitious potential energy V'(r)
{(Chapter 3) for nonzero angular momentum. When finished, reintroduce the mass
parameter, m, into all equations.

Repeat Exercise 21 with the conditions Vj; > V53 < 0and Vi3 = V5 = 0 and
discuss your results in terms of the effective potential energy of Chapter 3.

Make a full analysis of the example discussed in Eqgs. (6.27) to (6.30).
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The Classical Mechanics of the
Special Theory of Relativity

At the end of the nineteenth century, the physics community had two incom-
patible descriptions of phenomena, Newtonian mechanics and Maxwellian elec-
tromagnetic theory. Newtonian mechanics assumed that all inertial frames were
equivalent, while Maxwell’s wave equations gave a universal speed of light that
was the same in all inertial frames. Albert Einstein developed the special theory
of relativity to replace Newtonian mechanics with a theory that was consistent
with electromagnetic theory. After a brief historical survey, we shall review the
assumptions of the special theory and the consequences of these assumptions. We
shall then examine the formalism of the geometric picture of spacetime that re-
sults. Lastly, we develop a Lagrangian formalism and study attempts to express
the results in a proper relativistic form.

In Newtonian mechanics, a set of well-verified laws applies in an inertial frame
of reference defined by the first law. Any frame moving at constant velocity with
respect to an inertial frame is also an inertial frame. Consider two frames denoted
by S and 8" with (¢, x, y, z) and (¢', x’, ¥'. ) the coordinates in § and §', respec-
tively. Without loss of generality, we assume the coordinate axes are aligned, x
along x', and so on. Let §' be moving relative to S in the +x-direction at a speed
v, as shown in Figure 7.1.

Newtonian mechanics assumes the spacetime coordinates in S are related to
those in §’ by the simple expressions

=t

xX'=x—wt
y=y (7.1)
7=z

Transformations of this type are called Galilean transformations. Under this as-
sumption, it follows that Newton’s second law,

d

F=—p,
dtp

relating the applied force, F, and the momentum, p, remains invariant, and

F=F, t=1¢, and p= p’. (7.2)
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Zh

FIGURE 7.1 Galilean transformation from § to $’ by a velocity v in the +x-direction.

The time in both the S and S’ frames is assumed to be (¢ = t'). The Newto-
nian world view is that the universe consists of three spatial directions and one
time direction. All observers agree on the time direction up to a possible choice
of units. Under these assumptions, there are no universal velocities. If u and v’
are the velocities of a particle as measured in two frames moving with relative
velocity v as defined by Figure 7.1. then

'=u-—v. (7.3

Maxwell’s electromagnetic equations, on the other hand, have a universal con-
stant (denoted by ¢), which is interpreted as the speed of light. Since this is incon-
sistent with Newtonian mechanics, either Newtonian or Maxwellian mechanics
would have to be modified. After carefully thinking about how the universe would
appear to an observer traveling at the speed of light, Albert Einstein decided that
Maxwell’s equations are correct to all inertial observers and the assumed trans-
formations for Newtonian mechanics are incorrect. The correct transformations
make the speed of light the same to all inertial observers.

BASIC POSTULATES OF THE SPECIAL THEORY

Einstein used two postulates to develop what became known as the special theory:

1. The laws of physics are the same to all inertial observers.
2. The speed of light is the same to all inertial observers.

A formulation of physics that explicitly incorporates these two postulates is
said to be covariant. Since the speed of light, ¢, is the same in all coordinate
systems, it is reasonable o consider the numerical value of ¢ as a conversion
factor between the units used in measuring space and the units used in measuring
time. So, ¢dt is the time interval measured in the same units used to measure
space units. In the SI system of units, ¢ d¢ has dimensions of meters. Many books
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and articles on relativity set ¢ = 1 and measure time and space in meters. In the
material that follows, we shall show the explicit dependence upon ¢.

To satisfy the two postulates, the space and time of the special theory consist
of a single entity that we refer to as spacetime. This spacetime is the geometric
framework within which we perform physics. We cannot assume that all observers
make the same division into time and space in the same way. The separation is
unique to each inertial frame. The square of the distance in that spacetime, AsZ,
between two points A and B is given by

(As)2 =c? (time interval)2 — (space interval)z, (7.4)

where the interval is between the two points A and B. If the separation of the
interval is assumed to be infinitesimal, the A is replaced by the differential symbol
d. Since a point in spacetime consists of a specification of three spatial coordinate
values and one time value, the usual convention is to refer to a point in spacetime
as an event. The term event is used because such a point has a definite location
and a definite time in any frame.

The choice of opposite signs for the time and space intervals is intrinsic to
the theory; however, the choice of a positive sign for (¢ dt)? is arbitrary. Some
authors define a (ds)2, which is the negative of the choice given in Eq. (7.4). All
sign choices makes (ds)?> = 0 according to the definition in Eq. (7.4) for light,
since the space interval is (¢ x time interval). The choice made here for the
relative signs used for space and time is such that real bodies moving at a velocity
less than light have (ds)? > 0. This makes ds real for bodies moving slower than
light speed. If (ds)? > 0, the interval is called timelike. If (ds)? < 0, the interval
is called spacelike. Intervals for which (ds)? = 0 are called lightlike or null.

Since, to all inertial observers, objects that travel on timelike paths move less
than the speed of light, they are called tardyons. Hypothetical bodies that always
move faster than light are called tachyons, but such bodies will not concern us
here. Objects moving at the speed of light are called null or lightlike.

In the limit of small displacements (differential displacements), Eq. (7.4) be-
comes, in a Cartesian coordinate system,

(ds)? = (cdt)? — dx® +dy* +dz>). (7.4')

The four-dimensional space with an interval defined by Eqs. (7.4) or (7.4), 1s
often called Minkowski space to distinguish it from a four-dimensional Euclidean
space for which there would be no minus sign in Egs. (7.4) or (7.4°). The idea
of using ict for the time coordinate to make the space Euclidean is no longer
useful since it obscures the non-Euclidean nature of spacetime and makes the
generalization to noninertial frames more difficult.

Since the interval between two events of spacetime is a geometric quantity.
all inertial observers measure coordinates that preserve the value of the interval
squared, (ds)?. If S and S’ are two different inertial frames, then

ds” = ds?. (7.5)
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Thus, (ds)? is called the square of the invariant spacetime interval. For this to
be possible, the transformations between the coordinates in S’ and those in S,
must involve the relative velocity between the frames in both the space and the
time parts; that is, the time coordinate can no longer stand independent of the
transformation. This means the relative splitting of spacetime into space and time
will be different for different inertial observers. Since the time measured in a lab-
oratory frame is different from that measured by an observer at rest with respect
to the body under study, we must distinguish these times. We distinguish them by
calling the time measured by clocks at rest with respect to a body the proper time,
while the other inertial observer uses a time that is often called laboratory time.

As a special case of Eq. (7.4), consider the relation between the proper time, 7,
measured by an observer at rest with respect to an object in frame §’ with coordi-
nates (7. x’, y’, ), which is moving at a velocity, v, with respect to a laboratory
frame § with coordinates (¢, x, y, z)- In the rest frame of the object, there js no
motion, so Eqgs. (7.4') and (7.5) give

— 2
c(dr)? = c2(dr)? — v3(dr)? = 2(d1)? (1 czv )
or

dt = ———— (7.6)

Since Eq. (7.6) makes dt < dt, this effect on dt is called “time dilation”: moving
clocks appear to run slower.

The invariance of the interval expressed in Eq. (7.5), naturally divides space-
time into four regions, sketched in Fig. 7.2 relative to any event A at time 7.4 (A
is located at x = y = ¢t = 0 in Figure 7.2). If an event B at time #3 is such that
(ds.p)? > 0, then all inertial observers will agree on the time order of the events
A and B. It is even possible to choose an inertial frame where 3 has the same
space coordinates as A. If 13 is less than ¢ 4 in one inertial frame, then ¢ is less
than 74 in all inertial frames. We call this region the past. Likewise, there is a
region called the future where for event C (shown in Figure 7.2), t¢ is greater than
1 4 for all inertial observers. Both the past and the future could be causally related
to the event A. For any event inside the light cone, there exists a frame in which
that event and the origin have the same x, y, z coordinates.

If (ds .,,m)2 < (, then there exist a set of inertial frames in which the relative
order of t 4 and ¢ can be reversed or even made equal. This region has sometimes
been referred to as the elsewhere, or as the elsewhen. In the region in which event
D is located, there exists an inertial frame S’ with its origin at event the A in
which D is at the same time as A (but somewhere else). There also exist frames
in which the time of D occurs before .4 and frames in which the time of D is after
event A. Separating the past-future and the elsewhere is the null or light cone,
where ds? = 0. The null cone is the set of spacetime points from which emitted
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cl

> null or hight cone
>

/ E

elsewhen

FIGURE 7.2 The three dimensions (cf, x, and y) of the light cone. The third spatial
dimension has been suppressed. The cvent A referenced m the text is located at x = y =
¢t = 0. The light cone is the set of (ct, x, y) traced out by light enutted from ¢t = x =
y = 0 or by light that reaches x = y = 0 at time ¢t = 0. The past and future lie mside the
light cone. This figure 15 of necessity misleading because all points on the light cone have
zero separation (n spacetime.

light could reach event .4, and those points from which light emitied from event
A could reach. Any interval between the origin and a point inside the light cone
is timelike, and any imterval between the origin to a point outside the light cone is
spacelike. Understanding the implication of the division of spacetime by the light
cone is usually all that is needed to resolve the apparent paradoxes of the special
theory.

LORENTZ TRANSFORMATIONS

The simplest set of transformations that preserve the invariance of the interval,
ds?, are called the Lorentz transformations. These transformations are simplest 1n
the sense that they are linear in the coordinates and as the relative velocity goes to
zero, the transformations become identity transformations. If we consider parallel
Cattesian coordinate systems, S and §’, whose origins coincide at t = t' = 0, and
whose relative velocity is v along the x axis as measured by S, and define

1
g = ; and  y=—u 1.7

P

then the following four equations relate the two sets of coordinates

of = ctl:ﬂﬁ; = y(ct — Bx) (7.8a)
x'= X pe = y(x — Bet) (7.8b)
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y =y (7.8¢)
7 =z (7.8d)

Here we are only interested in transformations for which ¢ — ¢ and x’ — x as
B — 0. As matrices, these transformations appear ag

ct’ y —yB 0 0]{ect

' _|—-vB Y 0 0 x '
Y11=l o o 1 olly (7.8)
7 0 0 0 1]z

In the limit of B < 1, Egs. (7.8) reduce to the Galilean transformations as ex-
pected.

The generalization to arbitrary orientation of the velocity relative to the axes
is straightforward. Since we are considering spacetime a four-dimensional en-
tity, we would expect to deal with four-dimensional vectors. Using the notation
(ct, x, y,2) = (ct, r) allows the writing of the generalization of Eqs. (7.8') to the
case where v is not paralle] to an axis, as

ct' =yt —p-r)

r_ ., B-DBy -1
=r+ 7 -

provided the two sets of axes are aligned. Another way to express this arbitrary

velocity is to consider the Lorentz transformation between two inertial coordi-

nate systems with aligned axes, as a matrix transformation relating the two 4-
quantities, X = (¢t, r) and X' = (¢t’, r"), where

r

Byect, (7.9)

x' = Lx (7.10)

We treat X’ and x as columm matrices and L as the symmefric matrix
R4 ~vBx ~VPy -vB ]
-8 1+ =D ¢ -DER o -DEE

N A Byb:
—v8y -DER 1+0-DE G -DEE
—-vB, (y-DEk& &b -1 4
| TPz Y ) 82 (v ) A2 +(y )32_

(7.11)

This reduces to the results given in Eqs. (7.8') when 8, = 8, 8y = 8, =0.
These transformations map the origin of § and the origin of §' to (0, 0, 0, 0).

Hence the coordinates of both origins correspond to the same location in space-

time. If this is not desired, there is a more general transformation of the form

X =lx+a (7.12)
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where L is a spacetime rotation (boost) and a is a spacetime translation. This is the
Poincaré transformation or the inhomogeneous Lorentz transformation. We shall
consider only homogeneous transformations for which a of Eq. (7.12) is zero.

VELOCITY ADDITION AND THOMAS PRECESSION

The most general homogeneous Lorentz transformation will involve both a veloc-
ity change and a rotation of the coordinates. The velocity transformation is termed
a boost and has the form of Eq. (7.11). Any homogeneous Lorentz transformation,
L, can be written as

L=Rly =L3R (7.13)

where R is a rotation matrix as discussed in Chapter 4, and Ly, which is called
a restricted ot proper Lorentz transformation, corresponds to a pure boost. The
restricted Lorentz transformations form a representation of the Lorentz group.*
Since R is not symmetric and Lo is symmetric, L will, in general, have no sym-
metry. Also, since Lo and R are matrices, RLy # LgR. There will exist two other
transformations L;, and R’ such that RLy = LyR'".

For any Lorentz transformation, L, there is an inverse transformation, L~!, such
that

L' =1""L=1, (7.14)

where 1 is the diagonal unit 4 x 4 matrix with elements 8,3. The existence of
an inverse places four constraints on the diagonal element and six on the off-
diagonal elements for a total of ten constraints on the Lorentz transformation.
There are then only six independent components. Three of these correspond to
the components of the relative velocity vector and three correspond to the Euler
angles of the rotation (see Section 4.4).

Consider three inertial systems, Sy, S, and S3, with x axes aligned. Let S; be
moving at a velocity v along the common x-direction with respect to S; and let
S3 be moving at velocity v’ along the common x-direction with respect to S3. The
Lorentz transformation from S, to S is given by

Y’ g 0 0 y —vB 0 0
L= -y’ v’ 0 0Of||-yp y 0 0
==1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

[yy' A+ 88) —vy'B+8) 0
-v¥'(B+8) yy'A+88) 0
0 0 1

0

0 0

- o oo

*Group concepts are discussed in Appendix B.
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where Eq. (7.7) defines 8 and y for v and B’ and ' for v’. Let 8 be the speed of
S relative to S1 and y” the associated factor, then since L;_3 can be written as a
single Lorentz transformation with a velocity B” with its associated y” as

]/” _yllﬁll 0 0
_ _yllﬂll ylf 0 0
Lis = 0 0 1 ol

0 0 0 1

and, since these two forms of L1_3 must be the same, we have

" o_ ﬁ+ﬂ’
148

This is the relativistic addition of velocity formula for parallel velocities.

The product of any two transformations, Ly and L is itself a Lorentz trans-
formation, L3. Such a Lorentz transformation will, in general, involve not only a
boost, but may also include a rotation of coordinate axes. If both L; and L; are
pure boosts but their two velocities are not parallel, L3 will involve a rotation in
addition to a boost. This rotation is called the Thomas precession rotation. The
usual form for the Thomas precession assumes the second boost, L, has a ve-
locity small compared to the first boost, Ly and also that it is small compared to
the speed of hght. For example, the Thomas precession can be observed for a
gyroscope orbiting the Earth or for electrons in atoms.

Consider three inertial frames §j, $», and S3, with $» moving at a velocity 8
with respect to Sy and S3 moving at a velocity of B’ with respect to $3. Without
loss of generality, we can arrange the axes of S so that B8 is along the x axis of
Sy and @' lies in the x'y’ plane of S»; thatis, 8, 8’ define the x'y’ plane of S>. Let
L represent the transformation from Sy to § and L’ the transformation from S to
S3 with y and y’ associated with 8 and 8’. Then from Eq. (7.11),

B

(7.15)

y =-yB 0 0
=y v 0 0
L= 0 o 1 0 (7.16)
0 0 0 1
and
- }’I —yI:BJ,c' _ylﬂ;: OT
/ f B , BuB
—y'B, 1+ -D=% ' -D=ZF 0
L= & 4 . 4 g ; (7.17)
i r_ 'y /I _ Py
v'B, =1 57 I+’ =Dy 0
0 0 0 1]

We assume that the components of 8’ ate small and only need be retained to first
order giving via matrix multiplications of Eq. (7.16) and Eq. (7.17)
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vv' vy’ V'8, O

" ’ -yB 14 0 0
L"=LL= 7.18
—vyY'B, vBY'B, v 0O 719

0 0 0 1

Since L” is not symmetric, it must correspond to a rotation and a boost. We shall
write the velocity of S3 as observed by Sy as 8.

Since the off-diagonal elements cotresponding to the z axis are zero. this ro-
tation is about an axis perpendicular to the xy plane, The boost from Sy to S3 is
denoted by B”, and we assume that #’ is small compated to B and also small
compared to the speed of light (¥’ =~ 1). Then, to first order, the nonvanishing
components of 8 are (Since the velocity perpendicular to x is small we can 1g-
nore to first order the distinction among y. ¥, and y")

B:=8B B = % g =p% and y'=y, (7.19)
and Eq. (7.18) becomes
y' o —y"B V"B 0
L~ :)’:Zgg y,,;g y 7 g . (7.18)
0 0 0 1

In this approximation, a pure Lorentz transformation from S3 to S; (the inverse
transformation) would correspond to a large boost in the x” axis of —B7 and a
small boost in the y” axis of —B). The Lorentz boost for that transformation

yll yllﬂ;’l yII ;I 0
-1 14 14 — ﬁ__;:
Ly = v By e (' ~Dg 0 (7.20)
yll ;I (yll — l)g% l O
0 0 0 1

Finally, the rotation matrix induced by the rotation from S; to S3, after some
algebraic simplification and the dropping of higher-order terms in 87, is found
to be

1 0 0 0
ﬂ”
0 1 -D=x 0
R=L'L;_; = 8 v ) B (7.21)
0 —(r-— 1)7‘ 1 0
0 0 0 1

Comparison with Eq. (4.44) shows that R implies S§3 is rotated with respect 1o S;
about the z axis through an infinitesimal angle:
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ﬂ” " Y — 1
AR =(y =D = BB (732_) : (722)

The spatial rotation resulting from the successive application of two nonparallel
Lorentz transformations has been declared every bit as paradoxical as the more
frequently discussed apparent violations of common sense, such as the so-called
“twin paradox.” But the present apparent paradox has important applications, es-
pecially in atomic physics, and thexefore has been abundantly verified experimen-
tally.

Congider a particle moving in the laboratory system with a velocity v that is
not constant. Since the system in which the particle is at rest is accelerated with
respect to the laboratory, the two systems should not be connected by a Lorentz
transformation. We can circumvent this difficulty by a frequently used stratagem
(elevated by some to the status of an additional postulate of relativity). We imagine
an infinite number of inertial systems moving uniformly relative to the laboratory
system, one of which instantaneously matches the velocity of the particle. The
particle is thus instantaneously at rest in an inertial system that can be connected to
the laboratory system by a Lorentz transformation. It is assumed that this Lorentz
transformation will also describe the properties of the particle and its true rest
system as seen from the laboratory system.

Suppose now that §; is the laboratory system, while §2 and S3 are two of the
mstantaneous rest systems a time A7 apart in the particle’s motion. By Eq. (7.22),
the laboratory observer will see a change in the particle’s velocity in this time,
Av, which has only a y-component ﬁ;fc = Av. Since the initial x axis has been
chosen along the direction of v = Bc, the vector of the infinitesimal rotation in
this time can be written as

v X Av

A = —(y - 1) vz

(7.23)

Hence, if the particle has some specific direction attached to it (such as a spin
vector), it will be observed from the laboratory system that this direction precesses
with an angular velocity

vxa

(7.24)

df) x
@=Gr="v-D73

where a is the particle’s acceleration as seen from S). Equation (7.24) is frequency
encountered in the form it takes when v is small enough that y can be approxi-
mated (using y &~ 1 + %ﬂz) as

1
w = -2?2-(3 X V). (7.25)

In either form, e is known as the Thomas precession frequency.
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VECTORS AND THE METRIC TENSOR

We will use the notation that the coordinates, which need not be Cartesian, are
written as x* where x® = ct is the time coordinate, and x!, x2. x3 are the space
coordinates. This change in notation is needed to be consistent with the develop-
ments in the following sections.

Consider an arbitrary one-dimensional curve in 4-dimensional spacetime, P,
described by a parameter A, where for a given A the coordinates of a point of
the curve can be written as x®(A), x! (1), x2(4), x3(A). In introductory texts a 4-
vector, v, is defined by this curve as an arrow whose tail is located at an event 4
on the curve and whose head is at an event B on the curve where vy = Pg—P4.
However, instead of defining the vector at two points, we can use the parameter
A, which is a measure of the length along the curve from A to B3, by writing

dPp
= = . 26
VARB (dl)x=o (7.26)

Such a 4-vector is a tangent vector to the curve. We adopt the notation that the
components of vectors are written with superscripts such as v?, v/, v, v3. In spite
of the way we draw tangent vectors, they do not have any extension in spacetime.
The arrows we draw simply help us visualize the vector. At each point along the
curve, the tangent vector has a direction and a magnitude. For curves that are
timelike, the proper time, 7, is usually chosen as the parameter A. The laboratory
coordinates are then x? = ¢r(v), ' = x(¢), x? = y(r), x> = z(r), and the
tangent to the curve is the four-velocity, u, of a particle traveling along the curve
P. Equation (7.26) becomes

{

u® = % =ye, W= ‘2—’2— =y’ (7.27)
where v = dx*/dt is the normal three-velocity with v¢ = (v%)% + (v7)2 + (v%)2,
We shall assume that Greek letters can take on the values 0-3 and Latin letters
the values 1-3. Repeated indices are summed. Since the 4-velocity of a particle is
defined over a range of the parameter A, there is an infinite set of 4-velocities for
the particle, one for each value of A. Such a set of vectors is termed a vector field.
Some common examples of vector fields are given in Table 7.1.

We assume that the components of any 4-vector can be expressed by the val-
ues of the vector’s projections along a set of basis vectors, ey, e}, €3, €3, and that
the coordinates are measured along the direction given by the basis vectors. Such
a system is called a coordinates basis.* Cartesian. spherical, and cylindrical co-
ordinate systems, among many possible systems, can have such a basis set. The
position of a point on the curve P(t) can be written as

P(r) = xH(z)ey, (7.28)

*The choice of a coordimate basis is arbitrary but avoids some complicauons. For this introductory
chapter we will assurne that each basis vector lies in the direction of its increasing coordinate.
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TABLE 7.1 Examples of Vector Fields

Time Space
Name Portion Portion (Ivlagmluv.ie)2 Type
Coordinate ct r 2t -2 spacelike, null, or ttmelike
Velocity yec yv P timelike
Momentum % p m2c2 timelike
Force 1,_: daf— 4 %1’3 =yF —(I“I\ie\avtoman)2 spacehke
Current density yoc vI ple? timehke

where repeated Greek indices, one raised and one lowered, are summed from 0
to 3. In particular, the 4-velocity given in Eq. (7.27) becomes

”°

u= %1_; = %eu = ute,. (7.29)
The magnitude of the 4-velocity is a scalar whose values can vary as we
change A. This set of magnitudes is an example of a scalar field. To convert a
4-vector field to a scalar field, we need what is called a functional,* which can
convert a pair of vectors into a scalar function at each point in spacetime. In other
words, we wish to define the scalar product of two vectors or vector fields. This
conversion of a 4-vector field (or two different vector fields) to a scalar field is
an example of a mapping. If both the vectors are the same, then this scalar would
be the square of the length of the vector, and when the vectors are different, it
is called the scalar product of the vectors. Such a functional is called the met-
ric tensor, g.! The metric tensor functional can be considered as a machine with
two slots into which you can insert two vectors to produce a scalar (real-valued

function). That is,

glu, V) =gv,u)=u-v, (7.30)
is the scalar product. In particular if the basis vectors are inseried into the metric,

8op = 8lew, €p) =€y - €g. (7.31)

The gup are the components of the metric tensor associated with the basis vec-
tors e,. For example, consider a two-dimensional Minkowski space with coordi-
nates ¢t and x and a vector v = (a, b). Then g(v, v) = a% — b2 and goo = 1,
gn=-L

The form of the gqp is defined by the form for the interval. This suggests that
we consider small displacements. If the relative displacement vector between two

*A tunctional 1s a function whose arguments are themselves functions.
TWe use the same notation for tensors in 4-space as we do for 4-vectors.
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points is small, it can be written as
di = Ax%eq. (7.32)

Recasting Eq. (7.32) in the language of BEq. (7.4'), we see for Minkowski coordi-
nates

(As)2 =d¢-dr = Ax“Axﬁea -eg = gaﬁAx“Axﬁ
= (cAn? — (Ax)? — (Ay)? - (A2)%.

In the limit of 1nfinitesirnal displacements this can be written as

ds? = gupdx®dxP, (7.32)
which holds for any metric tensor. The metric tensor for a Minkowski coordinate
system, using the +——— sign convention, has the following tensor representa-
tion*

1 0 0 0
0 -1 0 0

E=1o o -1 o (7.33)
0 0 0 -1

The scalar product of two vectors in this coordinate system is

Hev= u“vﬁgaﬂ = w0 — plpl — 4202 — 435, (7.34)

It is straightforward to show that in any coordinate system, the square of the
magnitude of the four-velocity is

ueu=c. (7.35)
The 4-momentum can be defined from Eq. (7.27)
p = mu, (7.36)

where the mass, m, is a scalar. So the length squared of the four-momentum is

p-p= mzcz, (7.37)

or from Egs. (7.27) and (7.34),

E2
p-p=mic =m’?y? —mh?y? = — = p’ (7.38)
C
*The notation used for the display ot a matrix is [ ], while for tensors () will be used as st was
m Chapter 5. Matrices are used for relating different coordinate frames while tensors are physical
geometric objects.
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where p is the length of the 3-momentum. This last form of Eq. (7.38) is often
written as

E? = mct + p2cl. (7.389)
The relativistic kinetic energy, T, is defined as

T=E—-mc*=mc?y - 1) (7.39)

=/ (me?)? + p?c? — mc. (7.39')

For B « 1, a power series expansion gives
T = Imv? + O(8Y). (7.40)

Since p = myv, Eq. (7.39) shows that the kinetic energy of a body with finite rest
mass tends to infinity as the speed approaches that of light (as § — 1, ¥ — o0).
In other words, it takes an infinite amount of energy to increase the speed of a
mass particle (or a space ship) from any velocity less than ¢ to ¢ itself. This is
another proof that it is impossible to attain or exceed the speed of light starting
from any finite speed less than ¢.

7.5 B 1-FORMS AND TENSORS*

Suppose we insert only one 4-vector into the metric tensor in Eq. (7.30). We
would produce an object that could be written as uy = gugu?. For example, in
the two-dimensional Minkowski space, if u* has components (a, b), then u, has
components (a, —b). This geometric object, u,, is called a /-form or, in an older
notation, a covariant vector. In the older notation the vector itself was called a
contravariant vector. If the vector is thought of as a directed line, the 1-form is a
set of numbered surfaces through which the vector passes as is shown in Fig. 7.3.
It is another functional (machine) similar to g, except it converts a vector to a
linear real-valued scalar function. That is, if 77 is a 1-form (field) and » is some
vector (field), the quantity denoted by (%, v} is a number that tells us how many
surfaces of 5 are pierced by v. For each vector field V, there is an associated 1-
form, V,, such that (V,,, V} = V - V is the scalar contraction or the square of the
magnitude of V.

The gradient is an example of a 1-form since, if we consider a curve P, param-
eterized by A, where A = ( at Py and take a scalar function, f, defined along the
curve,

df _ o 8f

]
Bf = ——fPO) = ——

= . 7.41
Ao dap, | 0x® (7.41)

*The material in Sections 7.5 and 7.6 1s not needed for Section 7.7 The Section order has been chosen
for continuity of ideas.
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FIGURE 7.3 A vector v between two neighboring points and a |-form »n. The piercing
of n by v produces a number given by (1, v). the number (including fractions) of surfaces

prerced

So

)

8a = agu =

axe

(742)

We often write either d, or d to indicate the gradient of a scalar. Several ex-
amples of vectors, 1-forms, scalar products. and metrics from relativity and other
areas of physics are given in Table 7.2.

The gradient of the coordinates, w®, defined as

w* =dx®, (7.43)
provides a set of basis 1-forms since
(0", ep) = 83, (7.44)
TABLE 7.2 Examples of Vectors and 1-forms
SYSTEM Vectors: 1-forms. Scalar Metnic
(Contravariant (Covariant Contraction
Components) Components)
Euchdean (dx, dy,dz) (dx,dy.d7)  |dx®+dy2 +dz? 1 0 0
Cartesian (x, y. z) 0 1 0
0 0 1
Euchdean (dr.d8,d¢) (dr, r? de. dr2+72d6> |1 0 0
Spherical r2sin? 6 dg) +r2sinedg? [ 0 r2 0
0 0 r’sin®d
Sohd-state r (latice vector) | k (reciprocal vector) r-k varics
Quantum theory |2} (ket) {s] (bra) {yle) 831
Special theory of | (c dt, dr) (cdt. —dr) Adat—arr 1 0 0 0
relativity 0 -1 o0 0
(Minkowsk1) o ¢ -1 0
0 ¢ 0 -—i
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and any 1-form 7 can be written as

n =g~ (7.45)
It follows that
(N, €x) = 7a (7.46)
and for any vector, v
(n, v) = guv”. (7.47)

This gives us two ways to calculate the scalar product of two vectors v and u.
If we define the inverse metric by

gy 5y =55 (7.48)
or in index-free notation by
gle=gg7' =1, (7.48")
we can convert vectors (#®) to |-forms (u,) and conversely as
U = B o _ af
o = gopu" and u” =g up. (7.49)
We can therefore write for two 4-vectors u and v (or they could be two 1-forms),
u-v=gu,v) = gepu® P = u, = uavﬁg"ﬁ. (7.34)
Since each 1-form has a unique associated vector, we could use the same symbol
for both. The difference is important only when considering components.
In terms of the two-dimensional example that we previously considered
(Minkowski spacetime) with ¢t and x as the coordinates). if the vector u has
components (a, b) and the vector v has components (¢, d), the ast three terms of

the preceding equation can be written as

gagt®vf = (D(@)(©) + (~1)(B)(d) = ac - bd,
u%vy = (a)(c) + (b)(—d) = ac — bd,

and
uapg™® = @)@ + (B)d)(~1) = ac — bd.

It may help to consider the relationship between a vector and a 1-form from a
more general point of view using the Minkowski two-dimensional space as an
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example. A vector V in two-dimensional space with basis vectors e; and e can
be written as

V=Vl + Ve

In general, it is not necessary that any of the basis vectors be normalized (e;-e; #
1, &3 - e #£ 1) or that they be orthogonal (e; - €2 # (). This means that the
magnitude of the scalar product is not conveniently obtained from a simple sum
of squares

2
Vev= D) Vivi=hle e+ VIVie -+ e e) + (Ve e

and it does not have the value /(V1)2 4+ (V2)2. One way to obtain the magni-
tude of the vector is to define the dual space with basis vectors w! and w? (cf.
Eq. (7.43)), which have the properties

1 2 2 1

e1ow1=w sl = W =0 -8 =

and 1 ]

el == -0 =o' -e=0

We say that the vector basis, e, is orthonormal to the 1-form basis @’. The 1-form,
v, corresponding to the vector V may be written as

v= vmz)1 + vzwz.
This vector has a (magnitude)? of
(magnitude)’ = vV = Vv = Vi + V2.

When we want to require an object to be expressed in terms of its coordinate basis
vectors we will write with a Roman letter (e.g., #) and use Greek letters when it
is to be expressed in terms of the basis 1-forms (e.g., 7). This same approach
provides the scalar product of two vectors V and U in terms of their associated
1-forms v and u as

scalarproduct = Viu=p-U=u-V=U.v = Vi + vz = iU +0,U2

These results are easily generalized to more dimensions, to spaces that have
an indefinite metric, and even to more general spaces, such as those discussed in
Section 7.11. For example, in a four-dimensional Minkowski space, the 1-form,
v, associated with the vector V,isvg = VO, v; = =V, vy = —V2, v3 = —V3,
so the squared length of the vector V is

Vovo + V1v1 + V2v2 + V31)3 — VOvo _ Vlvl _ ‘;2Vz _ V3V3-
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The Lorentz transformations can be expressed in terms of the basis vectors. If
! ¢
welet x?, x, x2, x3 be the coordinates in a frame S and x®* = x* (x°, x!, x2, x3)
be the transformed coordinates in the frame §’, then the Lorentz transformation
can be written as
4 ’
=1 and  x* =% (7.50)
where LY y is the inverse transformation of L* 4. The basis vectors transform as

e =P, ep and ey = L% qep. (7.51)

Any vector transforms as v = v¥e, = v8 ez, s0 (n,v) = gev* = nafv"". This
B n
s -
means that 1-forms transform as n = n, ®® = nyrw® , and it follows that

0% = I.“’,gwﬁ and w* =% ﬁ:wﬁl, (7.52)
)

p = 1Y ﬁvﬁ and vt =7 ﬂrv‘g’, (7.53)
and

nw =Lfyng  and  pg =L g (7.54)

To convert vectors, sum on the second (lowered) index of the transformation ma-
trix. To convert 1-forms, sum on the first (raised) index. In tensor notation, vectors
are columns. while 1-forms are rows.

Scalars, vectors and 1-forms are simple examples of geometric objects called
tensors. A tensor is a functional into which we insert p vectors and » 1-forms
to produce a mapping onto a scalar. We describe a tensor by saying that it has a
rank given by the numbers # and p, where n is the number of 1-forms insertions
possible and p is the number of possible vector insertions. A tensor, Q, with 7
I-form slots and p vector slots is written as Q of rank (;’)) A tensor H of rank

(;;) is a functional into which we can insert n 1-forms o, A,.... 8 and p vec-
tors u. v, ..., w to produce a scalar. For example, the energy momentum vector
(E/c, p) is a tensor of rank ((1,), since contracting it with a 1-form produces a
scalar. An example of an ordinary second-rank tensor is the quadrupole tensor of
rank (3).

Although the components of 1-forms are written with their indices down, the
number of 1-form slots is written as the upper of the two numbers used to give the
rank of a tensor. This is because in component notation the object generated will
have that number of indices to be contracted with 1-forms. For example, if S is a

tensor of rank G),

S(aa0®, agwf, v e,) = 0,080Y S(0%, 0F, €,) = S 0urgv?,  (1.55)
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where the %/, are called the components of the tensor § in the chosen coordinate
frame. The output of § is a scalar (see Eq. (7.55)), so if we repeat this calcula-
tion in another Lorentz frame, we obtain the transformation law for the tensor
components under a coordinate transformation,

SYE = 5% 1Y LB L7, (7.56)

The metric tensor can be used to convert indices from vector to 1-form or 1-form
to vector; for example,

S%py = 8455%° . (7.57)

Hence, any tensor of rank () can be converted by the metric tensor, without
loss of information, to any arrangement of tensor and 1-form indices desired as
long as the total number of indices (n + p) is conserved. All of these objects are
different coordinate forms of the same geometric object (tensor).

Consider our two-dimensional example with a vector, », whose components
are (a, b) and a 1-form, &, with components (¢, d). If we examine a tensor W of
rank (}) then, from Eq. (7.55),

Wio, u) = Wgoquf = Woca + W' cb + Wloda + W'ydb.

Physically, by using sets of vectors, u’s, and 1-forms, o’s, and measuring the
value of the scalar field W (o, u), the values of the components of W% can be
determined in one frame. And from Eq. (7.56), specialized to the number and
type of components, the values in all inertial frames are known. In a Minkowski
s?ace with pseudo-Cartesian coordinates, the components of the tensor W of rank
( l) can be converted to a corresponding tensor of rank (g) using the metric tensor
in Eq. (7.33) {goo = 1, g11 = g22 = g33 = —1} and the expression in Eq. (7.57)
to give the following relations:

WOO = gOOWO(_) = WO(), Wo1 = 800W01 = Wol,
Wio = gnuWlo==Wlg, and Wi =gnu Wl =-w!,.

Given any two vectors, we can construct a second-rank tensor by the operation
called tensor product, T = u ® v. The tensor product is a machine whose output
is a number when the two vectors and the two 1-forms are inserted

@@v)(o,A) = (o, w) (A, v). (7.58)
The components of the tensor product are
T% = u™f. (7.59)

In our two-dimensional example of vector u with components (g, b) and vector
v with components (c, d), Eq. (7.59) becomes written in tensor form
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apy _ [ac ad
7 )_(bc bd)‘

This process can be continued and could include 1-forms as well as vectors; for
example, two vectors (u, v) and a 1-form (o) would be writtenasu @ v® o.

Other useful operations include the gradient, contraction, the divergence, and
the wedge product. First, let us consider the gradient operation. We used d for
the gradient operation on scalars. For a higher-rank tensor, the gradient is often
denoted by V. In three-dimensional Cartesian space, V is the operator

5 .8 @
v=il +j> yik
Yax oy To2

which may also be written as

0 a
O =e— +er—5 +e3—.
r e + 252 T 953
Returning to 4-dimensions, an example of a more general case, let S be a (g) rank
tensor, then by definition, VS(u, v, w, £) = 3¢8(u, v, w) with the vectors u, v, w
held fixed, and

as,
VS(u,v,w, §) = (Saﬁyuav‘gw") = Ta'?ifsuavﬂwy = Saﬂy,8§8uavﬂwy-
X
(7.60)
That is, the gradient operates only on the coefficients in the definition of the tensor,

not on the included vector fields. Since the vectors and 1-forms in Eq. (7.60) are
arbitrary and constant, we can rewrite the preceding as

ENY
O (Sapy) = ai‘g” 58 = Saﬂy,si"a, (7.60"

where the &% define the direction of the gradient, and the last equality shows
clearly that the derivative does not operate on the vector given by &°.

In Minkowski spacetime, contracting the energy momentum vector (E/c, p)
with the charge-current 1-form (pc, —J) produces the scalar (Ep — p - J). This
idea can be extended to reduce the rank of a tensor by a process called contraction.
The contraction operation can be performed on any tensor whose total rank (sum
of vector and 1-form indices) is equal to or greater than 2. To do this, enter a basis
vector in one slot and the corresponding 1-form basis in another slot and sum
over the basis, thereby producing a lower-rank tensor. For example, consider the
4-index tensor whose components are Rauﬁ,,. We can form a two-index tensor
by the inserting a basis 1-form into the first slot of the tensor definition, and the
related basis vector in the third slot, and summing over the basis set. Formally,

R(eq,u,w*. v) = M(u, v), (7.61)
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or in component form
My ut v’ = Ry, *utv’, (7.62)
which can be written as
My = Rap®s. (7.62)

In three-dimensional Cartesian space, the divergence of a vector V is the scalar

quantity V.v= ‘W‘ + 5 av} ad‘: , while in 4-dimensional space the 4-divergence

is dx_u In Mmkowskj spaceﬂme the 4-divergence operator is often denoted by the
same symbol, V, in italics, or by O whose components are

1
0,=V,=0—
S W
with e the 1-form basic components. For example, the continuity equation in
electromagnenc theory is

. D .
+V-_]=a—l:+v-]=0.

P _g.y=v.; =29
axt dct

The operator V2 (sometimes written as (%) is called the d’ Alembertian and is

3 o0 1 32 2 92 32)

P=V=V.Vagt— = [~

B oxtoxy ~ 202 \a2 Toy2 T 022
where the last equality is the expression in Minkowski space with Cartesian co-
ordinates. The 4-divergence operator on tensors reduces the rank of the tensor by
1. For spacetime tensors, the divergence is written as V « § and, considering as an

example a tensor S with a slot for a 1-form and three vector slots,
O-S@,v)=V-Swu,v)=V-S(w u.v,e) = 540",  (7.63)

That is, the gradient of Eq. (7.60) is taken along a basis direction, and then a
contraction is formed between this direction and one of the I-form slots in the
tensor. In component form, this reduces to

Va Saﬂy = Saﬁy’u- (7-63’)

The final tensor operator we need is the wedge product, also called the bivector
or biform, which is

UNAV=UuRU—Uv®uU, (7.64)

where the tensor product, ®, was defined in Eq. (7.58). The wedge product is an
antisymmetric vector product. In component form, Eq. (7.64) becomes
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(u A V) = uf — 2P (7.64")

Successive A operations can be strung together just like the ® operator. The
wedge product is useful whenever we deal with antisymmetric expressions. In
particular, when we look at the electromagnetic field in the next section, we will
discover that the fundamental field tensor, called Faraday, can be expressed in
terms of the wedge product.

Consider the two-dimensional example used previously, where u = ule; +
u?e; and v = v'e; + vZe;. The wedge product in Eq. (7.64') has components
W = u A v given by

W = ulvl — iyt plp? — 2! _ 0 uwlv? — vty
ol — 2yt 4202 — 22 ) 7 el — w2 0 :

Although the examples given above assumed a certain combination of 1-form
slots and vector slots, we must stress that the metric tensor can be used to produce
a tensor with indices in any desired position.

FORCES IN THE SPECIAL THEORY; ELECTROMAGNETISM

The preceding material has been concemed with the kinematics of the special
theory. The dynamics of the theory follows from the assumption that Newton’s
laws are correct for objects at rest in the rest frame of the observer, nearly correct
for objects moving slowly relative to the speed of light, and require generaliza-
tions to covariant equations. The correct generalization of the three-velocity to the
four-velocity was given in Eq. (7.27). So we must generalize the force law,

4

_ d(mv')
T dr

, (7.65)

to a covariant form.

Since Maxwell’s equations are assumed to be a correct description, we shall
briefly consider a covariant reformulation of electromagnetic theory as a guide
for the correct form of the force laws of mechanics. The vector and scalar elec-
tromagnetic potentials form a four-vector A* = (¢ /c, A). If the potentials satisfy
the Lorentz condition (in SI units), which is the vanishing of the four-divergence
of the electromagnetic potential 4-vector,

A
D-A=V-A=—=V-A+Moso%=0, (7.66)
oxH ot

they separately satisty the wave equations of the form (where ugsp = 1/c?)

%A

1 .
[?A = VA = 97 V2A = uoj (7.67a)
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for the space components and for the time component

182
Dp=Vp=—s22 vy P (7.67b)
c? 912 £0
In terms of ¢ and A, the Lorentz force is F = ¢{—V¢ + clz%—‘t‘ +1vx (Vx AL
This suggests that we should generalize the Lorentz force law to

dp, d(u’Ay) dA,
— = - . 7.68
ar ¢ ( ox# dt (7.68)
For the three-momentum, p5, and three-velocity, v, Eq. (7.68) becomes
d
_:f = e(E+v x B), (7.68")

with E the electric field, B the magnetic field, and e the electric charge. The geo-
metric approach is to define a tensor ', named Faraday, whose components will
be the electromagnetic field tensor and write, with u the 4-velocity,

d_p =eF(u). (7.69)
dt

In component notation, this becomes

dpt

;;t = eF*gub. (7.70)
This produces Maxwell’s equations, provided (according to Eq. (7.68)) F% is
given by

0 Ex Ey E,
Ex 0 ¢B, —cBy
Ey —cB, 0 ¢By
E;, c¢By —cBy 0

Fog = (7.71)

In Minkowski space, the indices are raised and lowered by the metric tensor

(Eq. (7.33)), so
0 -Ex -E, -E;

E, —cBy cBy 0
and
0 Ey E, E,
Fop = —E, 0 —cB; By 771"

_E}v CBZ 0 '_‘CBx
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The Faraday tensor can be written in at least two different ways using either the
tensor product, Eq. (7.58), or the wedge product, Eq. (7.64), as

F = Fopdx® ®dxf = } Fopdx® ndx?.

The latter expression explicitly shows the antisymmetry.
We can write Maxwell’s equation in their normal component form using geo-
metric notation:

VF=0 and V-F=1J, (7.72)

where J is the 4-current density with components (oc, j), where p is the charge
density and j is the three-current density. The first of these equations produces
(using three-dimensional notation) V- B = 0 and dB/9: + V x E = 0, while the
second gives V - E = p/gp and (1/¢2) 3E/3t — V x B = —ugqyj.

Following the guide provided by the covariant formulation of electromagnetic
theory, the proper generalization of Newton’s second law, Eq. (7.65), is

a’ _ K*, (7.73)
dr
where K* is a 4-vector force, known as the Minkowski force. The spatial compo-
nents of K# are not the components of the force in Eq. (7.65), but rather they are
quantities that reduce to the F' as § — 0. The exact form clearly results from
the Lorentz transformation properties of the forces present. Some aspects of the
4-force are listed in Table 7.1.

The general question (which cannot be uniquely resolved) is, How do we find
the proper relativistic expression for force? Electromagnetism is used to justify the
special theory, so we should expect no problem with it. As we saw in the previous
paragraphs, this is trivial for electromagnetic forces because the special theory and
the Lorentz transformations are constructed to make Maxwell’s electromagnetic
theory covariant. For example, the electromagnetic force is given by Eq. (7.68) as

duy A’ dA,
"’u—‘Q( axh "7)’

with g the charge on the particles and A, the components of the four-potential
given by (¢/c,A). Note that ¢ is the scalar potential and A is the three-
dimensional electromagnetic vector potential. So the ordinary force, F;, and
the spatial component of the Minkowski electromagnetic force, K;, are related by

F, =K/t - B2 (7.75)

‘What about other forces? Two methods are commonly used to deduce acceptabie
transformation properties of forces and hence the correct relativistic form of the
forces.

The first method is to argue that there are only four fundamental forces in
nature—gravitational, weak nuclear, electromagnetic, and strong nuclear, A cor-

(7.74)
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rect relativistic theory must provide valid expressions for these four forces. These
expressions, if stated in covariant form, will automatically provide the transfor-
mation properties of the forces. In this approach, since we understand electro-
magnetic forces, it remains to find expressions for the other three fundamental
forces in a covariant form in some frame and assume this is correct in all inertial
frames. It is assumed the transformations involve no terms that vanish in the cho-
sen frame; for example, there is no need to arbitrarily add terms proportional to
(v/c)?. This program has been carried out for two of the remaining three forces
(weak nuclear and strong nuclear) and for weak gravitational forces. It fails com-
pletely for strong gravitational effects. It is beyond the scope of the present text
to probe more deeply in to this question,

The second approach of determining the correct relativistic force is to simply
define force as being the time rate of change of the momentum. Then we write

dp.

=F, 7.76
7 ‘ (7.76)

where the p, in Eq. (7.76) is some relativistic generalization of the Newtonian
momentum that reduces to 7y, in the limit of small 8. The simplest generalization
is the one given in Eq. (7.36). This second approach has thus far failed to produce
any results other than those predicted by the first approach.

RELATIVISTIC KINEMATICS OF COLLISIONS
AND MANY-PARTICLE SYSTEMS

The formulations of the previous sections enable us to generalize relativistically
the discussion of Section 3.11 on the transformation of collision phenomena be-
tween various systems. The subject is of considerable interest in experimental
high-energy physics. While the forces between elementary particles are only im-
perfectly known, and are certainly far from classical, so long as the particles in-
volved in a reaction are outside the region of mutual interaction their mean motion
can be described by classical mechanics. Further, the main principle involved in
the transformations—conservation of the four-vector of momentum—is valid in
both classical and quantum mechanics. The actual collision or reaction is taken as
occurring at a point—or inside a very small black box—and we look only at the
behavior of the particles before and after.

Because of the importance to high-energy physics, this aspect of relativistic
kinematics has become an elaborately developed field. It is impossible to give a
comprehensive discussion here. All that we can do is provide some of the im-
portant tools, and cite a few simple examples that may illustrate the flavor of
the techniques employed. Although many collision experiments involve colliding
beams, we shall, for simplicity, confine our attentions to problems where one of
the particles is at rest in the laboratory frame. The generalization to both particles
moving in the laboratory frame is straightforward.



7.7 Relativistic Kinematics of Collisions and Many-Particle Systems 301

The notion of a point designated as the center of mass obviously presents dif-
ficulties in a Lorentz-invariant theory. But the center-of-mass system can be suit-
ably generalized as the Lorentz frame of reference in which the total spatial linear
momentum of all particles is zero. That such a Lorentz frame can always be found
follows from the theorem that the total momentum 4-vector is timelike for a sys-
temn of mass points.

One such frame is the center-of-momentum frame. This is a frame in which
the components of the spatial momentum of the initial particles add to zero. Such
a frame obviously exists. Let us define E and p in Eq. (7.36) to be

n n
E= 21: E, and p= Zl:p, (7.77)
= 1=

where the sum is over the particles involved. The left-hand side of Eq. (7.38)
becomes

> mymsc® =) mymsyys(vy - v,). (7.78)
rs rs

This clearly is positive (hint: separate the negative terms in which r = s), so
it is possible to find a frame in which the three-momentum, p, equals zero. The
Lorentz system, in which the spatial components of the total momentum are zero,
is termed the center-of-momentum system, or more loosely, and somewhat incor-
rectly, as the center-of-mass system, and will be designated by the abbreviation
“C-O-M system.”

As an example, let us consider a particle of mass m; and momentum p! in the
x-direction, which suffers a head-on collision with a particle of mass m> at rest in
an experimenter’s frame (called the laboratory frame). The initial 4-momentum is

P* = (Imyy + male,miyv', 0,0). (7.79)
The length squared of momentum has the magnitude
P*pu = (m% + m% + 2myymo)c?. (7.79)
When components are given, we shall follow the practice of denoting the primed
frame by primes on the indices. The two particles are denoted by subscripts 1
and 2 respectively.
In the C-O-M system, the total momentum is
(lm1y{ + m2931c, 0,0, 0), (7.80)

since by definition the space part of the momentum vanishes,

miyiBic + maysBrc =0, (7.81)
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where B and B are the velocities of m; and mjy, respectively, in the C-O-M
frame.

The boost, B, needed to go from the laboratory to the C-O-M frame, has the
value

B,=-8". (7.81%)

Since all velocities are parallel, the velocity addition formula Eq. (7.15) gives
the velocity B of mass m; in the C-O-M system in terms of B’ and its velocity
B = v/c in the laboratory frame,

B—F
1-88
The total squared momentum in the C-O-M frame given in Eq. (7.80) can be
rewritten using the resuits of Eqs. (7.81) and (7.82) as

myBA(1 - B%)c
p—#F
Equating Eqs. (7.79") and (7.83) gives a single equation that can be solved for
the boost velocity 8’. There are two real roots, one of which corresponds to the
physically meaningful case of 8’ < 1.

Since the spatial momentum in the C-Q-M frame is zero, there is clearly more
energy, p°, in this frame than in the laboratory frame.* The excess energy in the
C-O-M frame, AE, is obtained by subtracting the time component of Eq. (7.79)
from the time component of Eq. (7.80).

The total momentum four vector is conserved, which automatically implies
both conservation of spatial linear momentum and conservation of total energy
(including rest mass energy). Our major tools for making use of the conserva-
tion principle are Lorentz transformations to and from the C-O-M system, and
the formation of Lorentz invariants (world scalars) having the same value in all
Lorentz frames. Since energy and momentum are combined into one conservation
law, the relativistic results are more easily obtained than the nonrelativistic results
of previous chapters. The transformations between laboratory system and C-O-M
system are merely special cases of the Lorentz transformation.

As an example of the use of Lorentz invariants, let us consider a yeaction ini-
tiated by two particles that produces another set of particles with masses m,,
r=3,4,5,.... Inthe C-O-M system, the transformed total momentum is

B = (7.82)

) (7.83)

P¥ = (E'/c,0,0,0). (7.84)

It is often convenient to look on the C-O-M system as the proper (or rest) system
of a composite mass particle of mass M = E’/c2.? The square of the magnitude of

*For a single particle, the energy has a mimmum value, mc2, in the rest frame The C-O-M frame 15
not the rest frame of exther particle.

t Although 1t 1s customary in high-energy physics to use units tn which ¢ = 1, it seems more helpful
in an introductory exposition such as this to retain the powers of ¢ throughout.
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P must be invariant in all Lorentz systems and conserved in the reaction. Hence,
we have

; E12
PyPF = PyPt = — = M2, (7.85)

But for the initial particles, P, P# can be evaluated as
Py P* = (m} +m3)c® —2p1,pY. (7.86)

The energy in the C-Q-M system, or equivalent mass M, is therefore given in
terms of the incident particles as

E? = M*c* = (n} + md)e* + 2(E1Ex — py - po). (7.87)

Suppose now that, one particle, say 2, was initially stationary in the laboratory
system. Since then ps = 0 and E, = mac?, the C-O-M energy becomes

E? = M*c* = (m} + md)ct + 2myc*E). (7.88)

If the excess of E) over the rest mass energy be denoted by T, [cf. Eq. (7.39)]
that is, the kinetic energy, this can be written

E? = M2t = (my 4+ mp)2c* + 2mac®Th. (7.89)

It is clear that the available energy in the C-O-M system increases only slowly
with incident kinetic energy. Even in the “ultrarelativistic™ region, where the ki-
netic energy of motion is very large compared to the rest mass energy, E’ increases
only as the square root of Tj.

The effect of the proportionally small amount of incident energy available in
the C-O-M system is shown dramatically in terms of the threshold energies. It is
obvious that the lowest energy at which a reaction (other than elastic scattering) is
possible is when the reaction products are at rest in the C-O-M system. Any finite
kinetic energy requires a higher £’ or equivalently higher incident energy. The
total four-momentum in the C-O-M system after the reaction, denoted by P#
has the magnitude at threshold given by

2
P pH =c? (Z mr) , (7.90)
r

which, by conservation of momentum, must be the same as Eq. (7.85). For a
stationary target, the incident energy of motion as threshold is then given as a
consequence of Eq. (7.89) by
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2
(Z mr) — (m1 + m2)?
n r

mic2 2mima

If the Q value of the reaction is defined as*
Q= l:Z my — (my + mz)jl 2, (7.91)
r

this threshold energy becomes

T Q7 +2Q(m +ma)c?
5 = :

(7.92)

mic 2mmact

A common illustration of the application of Eq. (7.92) is the historic production
of an antiproton, P, by the reaction, involving a proton p,

p+n—>p+n+p+p,

where n is a nucleon, either neutron or proton. The masses of all particles involved
are nearly equal at 938 MeV equivalent rest mass energy and we select ¢ = 2mc?.
Equation (7.92) then says that the incident particle kinetic energy at threshold
must be

T, = 6mc? = 5.63 GeV,

which is 3 times the energy represented by Q! If, however, the reaction was ini-
tiated by two nucleons incident on each other with equal and opposite velocity,
then the laboratory system is the same as the C-O-M system. All of the kinetic
energy is available in this case to go into production of the proton—antiproton pair,
and each of the incident particles at threshold need have a kinetic energy of mo-
tion equivalent to only the mass of one proton, 938 MeV. It is no wonder so much
effort has been put into constructing colliding beam machines!

Another instructive example of a threshold calculation is photomeson produc-
tion, say, by the reaction

y+p=3"+K", (7.93)

where y stands for an incoming photon. For the purposes of classical mechanics,
a photon is a zero-mass particle with spatial momentum “p and energy ®pc.” Tn
calculating Q, the mass m) of the photon is zero:

Q = (mgo + mg+ — mp)c? = 749 MeV.

*( here has the opposite sign to the convention adopted 1 Eq. (3.112).

TThe square of the magmitude of the photon momentum four-vector is zero, so the vector can be
described as “lightlike ” The C-Q-M theorem 1s 1mperiled only 1f all of the particles are photons, and
cven then only if the photons are going in the same direction.
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Equation (7.92) is rewritten for a reaction involving an incident photon as

0% +20myc?

_ 0 .
Ti="pc 2maoc?

From the value of Q and the rest mass energy my of the proton, the threshold
energy for the reaction Eq. (7.93) is then

T1 = 1.05 GeV,

which is only slightly higher than Q.

We can also easily find the energy of the reaction products in the laboratory
system at threshold. The C-O-M system is the rest system for the mass M, with
PY = Mc. In any other system, the zeroth component of the 4-vector is PY =
Mcy. But in the laboratory system

1 1
PO = ~(B1+ E) = ~(E1 + mac?),

where the last form holds only for a stationary target particle. Hence, the C-O-M
system moves relative to the laboratory system such that

_ E\ + mac?

3 (7.94)

But at threshold all the reaction products are at rest in the C-O-M system so that
M =3 m,, and therefore
r

4+ (m+ ma)c?

> mec?
-

(threshold). (7.95)

The kinetic energy of the sth reaction product in the laboratory system is then
Ty = msct(y = 1), (7.96)

Thus, the antiproton at threshold has a kinetic energy 75 = mc? = 938 MeV. In
contrast, the K+ meson emerges at threshold with 494 MeV.

In Section 3.11, the kinematic transformations of a two-body nonrelativistic
collision were investigated. Eq. (3.117’) gives the reduction in energy of an inci-
dent particle after elastic scattering from a stationary target, as a function of the
scattering angle in the C-O-M system. The derivation of the relativistic analog
provides another interesting example of the methods of relativistic kinematics.
Use of Lorentz invariants here is not particularly helpful; instead direct Lorentz
transformations are made between the laboratory and C-O-M systems, Figure 7.4
illustrates the relations of the incident and scattered spatial momentum vectors in
both systems. The incident and scattered momentum vectors define a plane, in-
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’
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(a) Center-of-momentum system (b) Laboratory system

FIGURE 74 Momentum vectors for relativistic elastic scattering in C-O-M and labora-
tory Lorentz frames.

variant in orientation under Lorentz transformation, here taken to be the xz plane
with the incident direction along the z axis. Because the collision is elastic. the
masses of the incident particle, m, and of the stationary target, my, remain un-
changed; that is, m3 = my, ma = mo. Primes on the vectors denote C-O-M values,
unprimed vectors are in the laboratory system. To distinguish clearly between be-
fore and after the scattering, the indexes 3 and 4 will be retained for the vectors
after scattering. We have only to remember that 3 denotes the scattered incident
particle, and 4 the recoiling target particle. Components of the separate particle
4-vectors will always have two indices: the first for the particle, the second for the
component.

The Lorentz transformation from the laboratory to the C-O-M system is de-
fined by the y of Eq. (7.94) with M given by Eq. (7.89):

_ Ey + mac* T+ (m +m)c?
\/ngczE] + (m% + m%)c“ \/Zmzcle + (m] + ma)2ct

4 (7.97)

The quantity 8 can be found from y, or more directly by arguments similar to
those used to obtain y. In the C-O-M system, the spatial part of the total momen-
tum four-vector 1§ zero; in any other system, the spatial part is Mc8y. However,
in the laboratory system the spatial part is p;. Hence, by Eq. (7.94) 8 must be
given as

pPic pic

= = ] 7.98
E\4+myc? T+ (mi+mp)c? (7.98)

B

Because B is along the z axis, the Lorentz transformation takes (with 8, = §, =

0) the form given by Eq. (7.11), and the components of p;‘ ’ in the C-O-M system
are given by
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’ 3/ ﬁEl
py=p =Y\P1— o

Ey

— O’__ El
—=p =y|——-8pn]. (7.99)
[ [

After the collision, p3 is no longer along the z axis, but since the collision is
elastic, its magnitude is the same as that of p}. If @ is the angle between p3 and
the incident direction, as in Section 3.11, then the components of pj in the C-O-M
system are

14

' . ’ ‘ ! E
Pl =pisine, pi=pleoso, pf=p{==L (1100

The transformation back to the laboratory system is the same Lorentz transfor-
mation but with relative velocity — 8. Hence, the components of p3 are

‘ )
p;=p; =psin®

3 3 o'y _ ‘ BE]
Py =y(py —Bp3) =y |P1c0sO+ —=
0 v 3 E| '
p3 = y(ps +ﬂp3 ) =y —C- +ﬁpl cos® ). (7101)

If E| and p| are substituted in the last of Egs. (7.101), from Eqgs. (7.99) we obtain,
after a little simplification, an expression for the energy of the scattered particle
in terms of its incident properties:

E3 = E; — y28(1 — cos ®)(pic — BE)). (7.102)

In Eq. (7.102), y and 8 must be expressed terms of the incident quantities through
Egs. (7.97) and (7.98), resulting in the relation

mgpfcz
2maE\ + (m? + m3)c?

v2B(pic — BE1) = (7.103)

With the help of the relation between p; and Ej, Eq. (7.38), this can be written

maT1(Ty + 2mic?)

; 7.104
2maTi + (my + ma)2c? (7.104

y2B(pic — BE1) =

Some further algebraic manipulation then enables us to rewrite Eq. (7.102) as

T_, _ _200-&/2)

= = 1 —cos®), 7.105
T T U+t 206 ) (7.109)
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where p = m | /m,, as in Section 3.11 for elastic scattering, and £ is the kinetic
energy of the incident particle in units of the rest mass energy,

£ =L, (7.106)
mic

Equation (7.105) is the relativistic counterpart of Eq. (3.117’). It is easy to see
that Eq. (7.103) reduces to the nonrelativistic case as £ — 0, and that if p = 1
(equal masses), the relativistic corrections cancel completely. Equation (7.105)
implies that the minimum energy after scattering, in units of mc?, is given by

(1—p)?
YO+ 02 +208"

&) =& (7.107)

In the nonrelativistic limit, the minimum fractional energy after scattering is

(€3)min _ (1 —p

2
; AR 7.108
& 1+p) 1 ( )

which is a well-known result, easily obtained from Eq. (3.117'). Equation (7.108)
says that in the nonrelativistic region a particle of mass m) cannot lose much ki-
netic energy through scattering from a much heavier particle, that is, when p « 1,
which clearly agrees with common sense. However, in the ultrarelativistic region,
when p€&; > 1, the minimum energy after scattering is independent of £,:

(my — my)2c?

1. 7.1

( 3)im =

Since the condition on £ is equivalent to requiring 7j > mac2, it follows from
Eq. (7.109) that such a particle can lose a large fraction of its energy even when
scattered by a much heavier particle. This behavior is unexpected, but it should be
remembered that for particles at these energies, traveling very close to the speed
of light, even a slight change in velocity corresponds to a large change in energy.

Finally, we may easily obtain the relation between the scattering angles in the
C-O-M and laboratory system by noting that (first index particle, second compo-
nent)

in ®
tany = 2L — s e (7.110)
Py (cos 0+ —,4)
Pyc
By Eq. (7.36),
PIC _ Y _ o
i O 7.111
E] - B ( )

so that tan ¥ can also be written
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sin®
tan = . 7.112
y(cos® + B/B)) 7112
In terms of initial quantities, Eqs. (7.99) show that
BE, P (EL* - ﬁP1)
— = FE (7.113)
pic p1— =t
This can be further reduced by employing the relations (cf. Eq. (7.98))
B 1
- % = (7.114)
my(my + ma)c? + mac?Ty
E| — = 7.115
1 —Bm —— (7.115)
The final expression for tan # can then be written as
sin®
tan ¥ = , (7.116)
y [cos ® + pg(p, £1)]
where g(p, &) is the function
L+ p(1 4 &)
) = ——— 7.117
glp. &1) TEYAEY: ( )
and y, by Eq. (7.97), takes the form
1
(0, &) Thte (7.118)

VU0 + 206

Again, in the nonrelativistic region, y and g tend to unity, and Eq. (7.116) re-
duces to Eq. (3.107). The correction function g(p, £;) never really amounts to
much, approaching the constant limit p as £ becomes very large. The important
factor affecting the transformed angle is y, which of course increases indefinitely
as &) increases. It does not affect the bounds of the angular distribution, when
© = 0 or 7, but its presence means that at other angles ? is always smaller than
it would be nonrelativistically, The Lorentz transformation from C-O-M to the
laboratory system, which does not affect the transverse component of the mo-
mentum, thus always tends to distort the scattered angular distribution into the
forward direction.

RELATIVISTIC ANGULAR MOMENTUM

In Chapter 1, it was proven that the nonrelativistic angular momentum obeys an
equation of motion much like that for the linear momentum, but with torques
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replacing forces. It was shown that for an isolated system obeying the law of
action and reaction the total angular momentum is conserved, and that in the
C-O-M system it is independent of the point of reference, All of these statements
have their relativistic counterparts, at times involving some additional restrictions.

For a single particle, let us define an antisymmetric tensor of rank (g) in
Minkowski space using the formalism of Eq. (7.64)

m=xAp (7.119)
whose elements would be
mt’ = x#p¥ — x¥p#. (7.120)

The 3 x 3 subtensor m*/ clearly corresponds, as was seen in Section 5.1, with
the spatial angular momentum of the particle. An equation of motion for m#" can
be found by taking its derivative with respect to the particle’s proper time and
making use of Eq, (7.73) giving

d
£—=uAp+xAK=xAK, (7.121)

where the first term vanishes by the antisymmetry of the wedge product and X is
the Minkowski force. In component notation, Eq. (7.121) becomes

dm#V
dt

This suggests we define the relativistic generalization of the torque by

=xH*K¥ —x" K" (7.122)

N=xAK, (7.123)
whose components are
N#Y = x# KV — x"K*, (7.124)

Thus, m obeys the equations of motion

‘%’ =N, (7.125)
whose component form is
dm#¥
Z’t = N, (7.126)

with Eq. (1.11) as the nonrelativistic limiting form.
For a system involving a collection of particles, a total angular momentum
4-tensor can be defined (analogously to the total linear momentum 4-vector) as

M=Y m (7.127)
3
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or in component form

MR =" mi, (7.128)
3

where the index s denotes the sth particle. It is more difficult to form an equation
of motion for M because each particle has its own proper time. (For the same rea-
son, we did not attempt it even for P.) Nevertheless, plausible arguments can be
given for the conservation of M under certain circumstances. If the system is com-
pletely isolated and the particles do not interact with each other or with the outside
world (including fields), then m for each particle is conserved by Eq. (7.126), and
therefore M is also conserved. Even if the particles interact, but the interaction
takes place only through binary collisions at a point, there still could be conser-
vation as can be seen from the following argument. Instantaneously when the two
particles collide they are traveling together and have the same proper time. In
other words, their world lines cross and they share the same event. One can there-
fore write an equation of motion of the form of Eq. (7.126) for the sum of their
angular momenta. If the impulsive forces of contact are equal and opposite—as
we would expect from conservation of linear momentum in the collision—then
the sum of the impulsive torques cancel. Hence relativistic angular momentum is
also conserved through such collisions. Note that unlike the nonrelativistic case
covariance requires that the interactions are assumed to be instantaneous point
collisions.

The relativistic angular momentum obeys the same kind of theorem regarding
translation of the reference point as does its nonrelativistic counterpart. In the def-
inition, Eq. (7.120) or Eq. (7.128), the reference point (really reference “event”)
is the arbitrary origin of the Lorentz system. With respect to some other reference
event a,, the total angular momentum is

M@) =) (x:~ @) Ap: (7.129)
3

=M0)—a, AP (7.130)

As in the nonrelativistic case, the change in the angular momentum components
is equal to the angular momentum, relative to the origin, that the whole system
would have if it were located at a;.

In Chapter 1, one particular reference point played an important role—the cen-
ter of mass. We can find something similar here, at least in one Lorentz frame, by
examining the nature of the mixed time and space components of M#¥, namely,
M% = — M0 By definition, in some particular Lorentz frame, these components
are given by

MY =3 "(x)p{ — xi pd) (7.131)
§

JE
=c2(rp§ -~ xczs). (7.132)
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In the C-O-M frame, the total linear momentum p = 3" p, vanishes, and MY in
this frame has the form

(7.133)

: x E
MY =—LZ =
C-
3

If the system is such that the total angular momentum is conserved, as desctibed
above, then along with other components M 1s conserved and hence

Z x] Eg = constant.
s

Conservation of total linear momentum means that E = > _ E; is also conserved.
1t is therefore possible to define a spatial point R,

Zx.sJEr
R =- ,
J ZES

s

(7.134)

associated with the system, which is stationary in the C-O-M coordinate frame.
In the nonrelativistic limit, where to first approximation E; = mqc?, Bq. (7.134)
reduces to the usual defimtion, Eq. (1.21). Thus, a meaningful center of mass
(sometimes called center of energy) can be defined in special relativity only in
terms of the angular-momentum tensor, and only for a particular frame of refer-
ence. Finally, it should be noted that by Eq. (7.130) the spatial part of the angular
momentum tensor, M, is independent of reference point in the C-O-M system.,
exactly as in the nonrelativistic case.

Except for the special case of point collisions, we have so far carefully skirted
the problem of finding the motion of a relativistic particle given the Minkowski
forces. To this more general problem we address ourselves in the next section.
within the nominal framework of the Lagrangian formulation.

THE LAGRANGIAN FORMULATION OF RELATIVISTIC MECHANICS

Having established the appropriate generalization of Newton’s equation of motion
for special relativity, we can now seek to establish a Lagrangian formulation of the
resulting relativistic mechanics. Generally speaking, there are two ways in which
this has been attempted. One method makes no pretense at a manifestly covariant
formulation and instead concentrates on reproducing, for some particular Lorentz
frame, the spatial part of the equation of motion, Eq. (7.76). The forces F; may or
may not be suitably related to a covariant Minkowski force. The other method sets
out to obtain a covariant Hamilton’s principle and ensuing Lagrange’s equations
in which space and time are treated in common fashion as coordinates in a four-
dimensional configuration space. The basis for the first method is at times quite
shaky, especially when the forces are not relativistically well formuiated. Most of
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the time, however, the equations of motion so obtained, while not manifestly co-
variant, are relativistically correct for some particular Lorentz frame. The second
method, on the other hand, seems clearly to be the proper approach, but it quickly
runs into difficulties that require skillful handling if they are to be solvable, even
for a single particle. For a system of more than one particle, it breaks down almost
from the start. No satisfactory formulation for an interacting multiparticle system
exists in classical relativistic mechanics except for some few special cases.

This section follows the first method, seeking to find a Lagrangian that leads to
the relativistic equations of motion in terms of the coordinates of some particular
inertial system. Within these limitations there is no great difficulty in construct-
ing a suitable Lagrangian. It is true that the method of Section (1.4), deriving the
Lagrangian from D’ Alembert’s principle, will not work here. While the principle
itself remains valid in any given Lorentz frame, the derivation there is based on
p: = m,v,, which is no longer valid relativistically. But we may also approach the
Lagrangian formulation from the alternative route of Hamilton’s principle (Sec-
tion 2.1) and attempt simply to find a function L for which the Euler-Lagrange
equations, as obtained from the variational principle

L))
8l = 8/ Ldr=0. (7.135)
H

agree with the known relativistic equations of motion, Eq. (7.76).
A suitable relativistic Lagrangian for a single particle acted on by conservative
forces independent of velocity would be*

L=-mcJ1—p2-v, (7.136)

where V is the potential, depending only upon position, and g2 = v?/c?, with v
the speed of the particle in the Lorentz frame under consideration. That this is the
correct Lagrangian can be shown by demonstrating that the resultant Lagrange

equations,
d (aL aL 0
dr \ avt axt

agree with Eq. (7.76). Since the potential is velocity independent v; occurs only
in the first term of (7.136) and therefore

aL mv

W -g

The equations of motion derived from the Lagrangian (7.136) are then

Pt (7.137)

*We do not choose L = mc?y/1 - V1= B2 — V because we want # in Eq. (7.139) to be the total
energy
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d mvt vV

dt /1_ﬂ2=_5c_i_

which agree with (7.76). Note that the Lagrangian is no longer L = T — V but that
the partial derivative of L with velocity is still the momentum. Indeed, it is this
last fact that ensures the correctness of the Lagrange equations, and we could have
worked backward from Eq. (7.137) to supply at least the velocity dependence of
the Lagrangian.

We can readily extend the Lagrangian (7.136) to systems of many particles
and change from Cartesian to any desired set of generalized coordinates g. The
canonical momenta, P, will still be defined by

i

P = ——, (7.139)

so that the connection between cyclic coordinates and conservation of the corre-
sponding momenta remains just as in the nonrelativistic theory. Further, just as in
Section (2.7), if L does not contain the time explicitly, there exists a constant of
the motion

h=4¢'P —L. (7.139)

However, the identification of # with the energy for, say, a Lagrangian of the form
of Eq. (7.136) cannot proceed along the same route as in Section (2.7). Note that
L in Eq. (7.136) is not at all a homogeneous function of the velocity components.
Nonetheless, direct evaluation of Eq. (7.139) from Eq. (7.136) shows that in this
case 4 is indeed the total energy:

which, on collecting terms, reduces to

mc

h:———z+V=T+V+m3=E‘ (7.140)

Ny

The quantity / is thus again seen to be the total energy E, which is therefore a
constant of the motion under these conditions.

The introduction of velocity-dependent potentials produces no particular diffi-
culty here and can be performed in exactly the same manner as in Section 1.5 for
nonrelativistic mechanics. Thus, the Lagrangian for a single particle of charge, g,
in an electromagnetic field is

L=-mc*/1—B2—qgp+qgA-v. (7.141)
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Note that the canonical momentum is no longer mu; there are now additional
terms arising from the velocity dependent part of the potential:

P =mu' + in. (7.142)

This phenomenon is not a relativistic one of course; exactly the same additional
term was found in the earlier treatment (cf. Eq. (2.47)). The formulation of
Eq. (7.141) is not manifestly covariant. But we can confidently expect that the
results will hold in all Lorentz frames as a consequence of the relativistic co-
variance of the Lorentz force derivable from the velocity dependent potential in
Eq. (7.141).

Almost all of the procedures devised previously for the solution of specific
mechanical problems thus can be carried over into relativistic mechanics. A few
simple examples will be considered here by way of illustration.

1. Motion under a constant force; hyperbolic motion. It will be no loss of gener-
ality to take the x axis as the direction of the constant force. The Lagrangian is

therefore
L =—-mc*/1 — B2 — max, (7.143)

where 8 is x/c and a is the constant magnitude of the force per unit mass. Either
from Eq. (7.143) or directly on the basis of Eq. (7.76), the equation of motion is
easily found to be

d B _a
dt J1— B2 T

The first integration leads to

B _at+o
\/]_—’32 c
or
at + o

/2t (att+a)?

where « is a constant of integration. A second integration over ¢ from 0 to ¢ and
x from xg to x,

' Aat' +a)dt’
2+ (at’ + )2’

X—Xg=c

leads to the complete solution
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x—x0= = [V F @ +a) -/ ], (7.144)

If the particle starts at rest from the origin so that xg = 0 and vy = 0 = «, then
Eq. (7.144) can be written as

2
¢2 2 oA
X+ — -7t =—2,
a (74

which is the equation of a hyperbola in the x, ¢ plane. (Under the same conditions
the nonrelativistic motion is of course a parabola in the x, t plane). The nonrela-
tivistic limit is obtained from Eq. (7.144) by considering (at 4-«) small compared
to c; the usual freshman-physics formula for x as a function of ¢ is then easily
obtained, recognizing that in this limit & — wyp.

The motion described in this example arises in reasonably realistic situations.
It corresponds, for example, to the acceleration of electrons to relativistic speeds
in the laboratory system by means of a constant and uniform electric field. The
illustration considered next is more academic, but is of interest as an example of
the techniques employed.
2. The relativistic one-dimensional harmonic oscillator. The Lagrangian in this
case is of the form of Eq. (7.136) with

V{x) = 1kx?. (7.145)

Since L is then not explicitly a function of time and V is not velocity depen-
dent, the total energy E is constant. Equation (7.140) may now be solved for the
velocity x as

1 [dx\? m2ct
— =) =1 - —— 7.
c? (dr) : (E—-V)? (7.146)

For the moment, we shall postpone substituting in the particular form of V(x)
and generalize the problem slightly to include any potential sharing the qualita-
tive characteristics of Eq. (7.145). Thus, let us suppose that V (x) is any poten-
tial function symmetric about the origin and possessing a minimum at that point.
Then providing E lies between V (0) and the maximum of V, the motion will be
oscillatory between limits x = —b and x = +b, determined by

V{tb) =E.
The period of the oscillatory motion is, by Eq. (7.146), to be obtained from

4 f" dx
T=- —_—.
Cc Jo 1 — m2ct
Y (E-V@)?

(7.147)
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Equation (7.147), when specialized to the particular Hooke’s law form (7.145)
for V (x), can be expressed in terms of elliptic integrals. We shall instead examine
the first-order relativistic corrections when the potential energy is always small
compared to the rest mass energy mc?. A change of notation is helpful. The energy
E can be written as

E=mc?(1+E&)
so that here
E —_
E-VE _ 14 & —kx? =1+ k@®* —x?), (7.148)
me?
where
__k (7.149)
K= ome )
To the order (xb?)?, the period, Eq. (7.147) then reduces to
4 /” dx [ 3 o, }
T~ —_—_— |l - — (b —x°) . (7.150)
¢Jo /2 (d?~x2) 4

The intergral in Eq. (7.150) can be evaluated by elementary means, most simply
by changing variable through x = b sin ¢; the final result is

2 1 3 ., fm 3 kb?
= —{1-z =2nf—{1-=—%]).
= 2% (l 8Kb ) ' (1 16mc2)

Note that the expression in front of the bracket is 7g, the nonrelativistic period of
the harmonic oscillator. In special relativity, the period of the harmonic oscillator
is thus not independent of the amplitude; instead. there is an amplitude dependent
correction given approximately by

SV _ AT 2 e (7.151)

3. Motion of a charged particle in a constant magnetic field. In principle, we
should start from a Lagrangian of the form of Eq. (7.141) with the scalar potential
¢ = 0 and A appropriate to a constant magnetic field (Eq. 5.106). But we know
such a Lagrangian corresponds to the Lorentz force on the charged particle of
charge g, given by

F=g(vxB) (7.152)

(cf. Eq. 1.60). Hence, the equation of motion must be

d
P _svxB) =-L(pxB). (7.153)
dt my
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The nature of the force, Eq. (7.152), is clearly such that the magnetic field does
no work on the particle: F . v = 0. Hence, £ must be a constant, as also p
and y by Eq. (7.38’). Further, by Eq. (7.152), there is no component of the force
parallel to B, and the momentum component along that direction must remain
constant. It is therefore no loss of generality to consider the motion only in the
plane perpendicular to B and to let p represent the projection of the total linear
momentum on to that plane. Equation (7.153) then says that the vector p (whose
magnitude is constant) is precessing around the direction of the magnetic field
with a frequency

_ 48
=

Q (7.154)

referred to as the cyclotron frequency. In the nonrelativistic limit y — 1. This
agrees with the cyclotron resonance expression found in solid state physics texts.
Because y is constant, the velocity vector in the plane is also of constant mag-
nitude and rotating with the same frequency. The particle must therefore move
uniformly in a circular orbit in the plane with angular speed 2. Since the centrifu-
gal force, F, equals mu?/r, it follows that the magnitude of the linear momentum
in the plane must be given by

p=myr.

Combining this expression with Eq. (7.154) leads to the relation between the cir-
cle radius and the momentum:

)4

==, 7.155
2B (7.155)

r

The radius of curvature into which the particle motion is bent depends only upon
the particle properties through the ratio p/q (= Br). which is sometimes called
the magnetic rigidity of the particle. Note that while Q (Eq. (7.154)) shows rela-
tivistic corrections through the presence of y, the relation between r and p is the
same both relativistically and nonrelativistically. Recall that in both Eqgs. (7.154)
and (7.155) p is the magnitude of the momentum perpendicular to B. but in calcu-
lating ¥ we must use both the perpendicular and parallel components to find 8.*

COVARIANT LAGRANGIAN FORMULATIONS

The Lagrangian procedure as given above certainly predicts the correct relativistic
equations of motion. Yet it is a relativistic formulation only “in a certain sense.”

*The Larmor precession trequency ey, of Eq. (5 104) has an extra factor of 2, and corresponds to the
precession of a magnetic moment in a constant magnetic field This is a physically different case from
that of the cyclotron resonance of a charged particle moving at a constant speed in a magnetic field



7.10 Covanant Lagrangian Formulations 319

No effort has been made to keep to the ideal of a covariant four-dimensional form
for all the laws of mechanics. Thus, the time ¢ has been treated as a parameter
entirely distinct from the spatial coordinates, while a covariant formulation would
require that space and time be considered as entirely similar coordinates in world
space. Clearly some invariant parameter should be used, instead of ¢, to trace the
progress of the system point in configuration space. Further, the examples of La-
grangian functions discussed in the previous section do not have any particular
Lorentz transformation properties. Hamilton's principle must itself be manifestly
covariant, which can only mean in this case that the action integral must be a world
scalar. If the parameter of integration is a Lorentz invariant, then the Lagrangian
function itself must be a world scalar in any covariant formulation. Finally, in-
stead of being a function of x, and x,, the Lagrangian should be a function of
the coordinates in Minkowski space and of their derivatives with respect to the
invariant parameter.

We shall consider primarily a system of only one particle. The natural choice
of the invariant parameter in such a system would seem to be the particle’s proper
time 7. But the various components of the generalized velocity, #”, must then
obey the relation

u-u=uu’ =c?, (7.35)

which shows they are not independent. Therefore, we shall instead assume the
choice of some Lorentz-invariant quantity 6 with no further specification than that
it be a monotonic function of the progress of the world point along the particle’s
world line. For the purpose of this discussion, a superscript prime will be used to
denote differentiation with respect to 6:

o _dr’
de’
while a dot over the letter indicates differentiation with respect to ¢. A suitably
covariant Hamilton’s principle must therefore appear as

)
8l = 3/ A, x™) 4o, (7.156)
)
where the Lagrangian function A must be a world scalar and the (x#, x’#) means
a function of all or any of these. Note that this formulation includes what would
have ordinarily been called “time-dependent Lagrangians,” because A is consid-
ered a function of x°. The Euler-Lagrange equations corresponding to Eq. (7.156)

are
d [ 8A aA
do (3x”") BT (7.1

The problem is to find the form of A such that Egs. (7.157) are equivalent to the
equations of motion, Eq. (7.73).

One way of seeking A is to transform the action integral from the usual integral
over ¢ to one over 8, and to treat the time ¢ appearing explicitly in the Lagrangian
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not as a parameter but as an additional generalized coordinate. Since 6 must be a
monotonic function of ¢ as measured in some Lorentz frame, we have

dx* _dx' db _ x"

& e x 7.1
dt . de dr 0 (7.158)

Hence, the action integral is transformed as

t 1 (0} i xfj 0
I=[ L(xj,t,ij)dt=—/ L xJ.c-—-(-)- x"de.
f c 6, x/

It would seem therefore that a recipe for a suitable A is given by the relation

x/O

x"® x'!
Ax*, x'™™ = TL (x“, c—) . (7.159)
The Lagrangian obtained this way is however a strange creature, unlike any
Lagrangian we have so far met. Note that no matter what the functional form of
L, the new Lagrangian A is a homogeneous function of the generalized velocities
in the first degree:

Ax*, ax™) = aA(x", x™). (7.160)

This is not a phenomenon of relativistic physics per se; it is a mathematical conse-
quence of enlarging configuration space to include ¢ as a dynamical variable and
using some other parameter to mark the system-point’s travel through the space.
A Lagrangian obeying Eq. (7.160) is often called (somewhat misleadingly) a ho-
mogeneous Lagrangian and the corresponding “homogeneous™ problem of the
calculus of variations requires special treatment. The most serious of the resulting
difficulties will arise in the Hamiltonian formulation, but we can glimpse some of
them by noting that in consequence the energy function Ak, according to Eq. (2.53),
is identically zero. It follows from Euler’s theorem on homogeneous functions that

if A is homogeneous to first degree in x'*, then
aA
7
A=x ppe

We can then show (cf. Derivation 10 at the end of this chapter) that as a result the
function A identically satisfies the relation

d dA JA
[d_e_ (_ax'#) - ax_ﬂ] x® =0, (7.161)

Thus, if any three of the Lagrangian Eqgs. (7.157) are satisfied, it will follow, solely
as a consequence of the homogeneous property of A, that the fourth is satisfied
identically.

Being thus forewarned to tread carefully, so to speak, let us carry out this trans-
formation for a free particle. From Eq. (7.136), the “relativistic” but “noncovari-
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ant” Lagrangian for the free particle is

L = —mey/c? — 5.

By the transformation of Eq. (7.159), a possible covariant Lagrangian is then

A =—me, /xLx”‘. (7.162)

With this Lagrangian, the Euler-Lagrange equations are equivalent to

d mex’

E\/'x_/ﬁ;:;

The parameter 6 must be a monotonic function of the proper time t so that deriva-
tives with respect to 8 are related to those in terms of 7 according to

S = dx dtu
S de  do

=0.

Hence, the Lagrangian equations correspond to

d mcu _d(mu)_0
dt \Jugu® )~ dtv

which are Eqgs. (7.73) for a free particle. As we have seen above, the fourth of
these equations says that the kinetic energy T is conserved, which is indeed not
new but can be derived from the other three equations.

We have thus been led to a covariant Lagrangian procedure that works, at least
for a single free patticle, but only in a tortuous fashion. The elaborate superstruc-
ture can be greatly simplified however by a few bold pragmatic steps. First of all,
we can avoid using 8 and work in terms of the proper time 7 directly by a proce-
dure introduced in a slightly different context by Dirac. The constraint on the gen-
eralized velocities in terms of 7, Eq. (7.35), is not a true dynamical constraint on
the motion; rather it is a geometric consequence of the way in which t is defined.
Equation (7.35) says in effect that we cannot roam over the full four-dimensional
u space; we are confined to a particular three-dimensional surface in the space.
Dirac calls relations such as Eq. (7.35) weak equations. We can with impunity
treat #¥ as unconstrained quantities, and only after all differentiation operations
have been carried out, need the condition of Eq. (7.35) be imposed. Certainly the
procedure would have worked above for the free particle Lagrangian. There would
have been no difference if 6 were set equal to t from the start and Eq. (7.35) ap-
plied only in the last step. The covariant Lagrange equations can with this proviso
therefore be written directly in terms of 7:

= (5=)-3m =0 (7.163)

d_t du? axV
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Secondly, it is not a sacrosanct physical law that the action integral in Hamil-
ton’s principle must have the same value whether expressed in terms of ¢ or in
terms of @ (or t). It needn’t be given by the prescription of Eq. (7.159). All that
is required is that A be a wotld scalar (or function of a world scalar) that leads to
the correct equations of motion. Tt doesn’t have to be homogeneous to first degree
in the generalized velocities. For example, a suitable A for a free particle would
clearly be the quadratic expression

A = smu,u”. (7.164)

NI—

Many other possibilities are available.* We shall use Eq. (7.162) for the “kinetic
energy” part of the Lagrangian in all subsequent discussions; many present and
future headaches will thereby be avoided.

If the particle is not free, but is acted on by external forces, then interaction
terms have to be added to the Lagrangian of Eq. (7.164) that would lead to the
corresponding Minkowski forces. Very little can be said at this time about the
additional terms, other than they must be Lorentz-invariant. For example, if G#
were some (external) four-vector, then G, x* would be suitable interaction term.
If in some particular Lorentz frame G1 = mu and all other components vanish,
then we would have an example of a constant force such as discussed in the pre-
vious section. In general, these terins will represent the interaction of the particle
with some external field. The specific form will depend upon the covariant formu-
lation of the field theory. We have only one example of a field already expressed
in a covariant way—the electromagnetic field—and it is instructive therefore to
examine the Lagrangian for a particle in an electromagnetic field.

A suitable Lagrangian can easily be seen to be

AG#, uty = Lmuut + qut A, (). (7.165)
The corresponding Lagrange’s equations are then

d v gdA’
El—_(mu )= e +

a
9xv (quﬂAﬂ') >

which are exactly the generalized equations of motion Eq. (7.73), with the
Minkowski force K, on a charged particle, Eq. (7.74). Note that again the “me-
chanical momentum” four-vector p* differs from the canonical momentum P#:

*In general, A can have the form mf (uyu*), where f(3) is any function of y such that

of

!
a8y T2

2

y=c

In Eq. (7 164), we have used f (v, u4") = %u,,u". The choice

flpuy) = —cjupu?

corresponds to Eq (7 162)
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aA
u
by a term linear in the electromagnetic potential. The canonical momentum, P,
conjugate to x” is now

E
P0=?+q

s |

=1z
[

where E is the mechanical energy and E is the total energy of the particle, E +
g¢. Thus, the momentum conjugate to the time coordinate is proportional to the
total energy. A similar conjugate connection between these two quantities will
recur later in nonrelativistic theory. The connection between the magnitude of the
spatial “mechanical” momentum and the energy E is still given by Eq. (7.38").
From Eq. {7.166), it is seen that the canonical momenta conjugate to x form the
components of a spatial Cartesian vector P related to p by

P =p+qA. (7.167)
In terms of P, Eq. (7.100) can be rewritten as
E? = (P — gAY + m?c4, (7.168)

which is a useful relation between the energy E and the canonical momentum
vector P.

The interaction term in the Lagrangian of Eq. (7.165) is an example of a vector
field interaction (as is also a term of the form G, x*). We could also have a sim-
ple scalar field interaction where the term added to the Lagrangian would be some
world scalar ¥ (x*). Or more complicated invariant interaction terms can be cre-
ated involving an external tensor field. The nature of such Lagrangians properly
stems from the physical field theory involved and cannot concern us further here.

So far we have spoken only of systems comprising a single mass particle. Mul-
tiparticle systems introduce new complications. One obvious problem is finding
an invariant parameter to describe the evolution of the system—each particle in
the system has its own proper time. With a little thought, however, we could imag-
ine ways of solving this difficulty. For example, the proper time associated with
the C-O-M system involves a symmetric treatment of all the particles and might
prove suitable. We could also include in the picture interactions of the particles
with external fields very much as was done for a single particle. The great stum-
bling block however is the treatment of the type of interaction that is so natural
and common in noarelativistic mechanics—direct interaction between particles.

At first sight, it would seem indeed that such interactions are impossible in
relativistic mechanics. To say that the force on a particle depends upon the po-
sitions or velocities of other particles at the same time implies propagation of
effects with infinite velocity from one particle to another—*action at a distance.”
In special relativity, where signals cannot travel faster than the speed of light,



324

711 |

Chapter 7 The Classical Mechanics of the Special Theory of Relativity

action-at-a-distance seems outlawed. And in a certain sense this seems to be the
correct picture. It has been proven that if we require certain properties of the sys-
tem to behave in the normal way (such as conservation of total linear momentum),
then there can be no covariant direct interaction between particles except through
contact forces.

There have been many attempts in recent years to get around this “no-
interaction” theorem. After all, we have seen that electromagnetic forces can
be expressed covariantly, and a static electric field gives rise to the Coulomb
law of attraction, which has the same form as the supposedly banned Newtonian
gravitational attraction. Some of these attempts have led to approximately covari-
ant Lagrangians, correct through orders of v2/c¢2. Others involve formulations of
mechanics at variance with our normal structures; most for example cannot be
stated in terms of a simple Hamilton’s principle.

INTRODUCTION TO THE GENERAL THEORY OF RELATIVITY

Thus far we have been careful to use the term “special theory of relativity” and
not to introduce the term “special relativity,” by which we endeavored to make
clear that it is the theory that is special, not the relativity. The special theory
uses ideal inertial frames that are assumed to exist over all of spacetime. The
general theory not only removes that requirement, but also has a spacetime whose
nature is part of the solution to the question of motion. To paraphrase John A.
Wheeler: “Matter tells space how to bend, and space returns the compliment by
telling matter how to move.” The general theory is often interpreted in terms of
non-Euclidean geometry, so terms like geodesic (paths of shortest distance) and
curvature of spacetime are often used. In this brief section we can only outline the
formalism of the general theory to show how the full tensor notation is used.
Five principles guided Einstein in the development of the general theory:

1. Mach’s principle—the special theory used inertial frames. E. Mach ob-
served that Newtonian inertial frames were not rotating with respect to the
fixed stars. This suggests Mach’s principle, whereby inertial properties are
determined by the presence of other bodies in the universe.

2. Principle of equivalence—whereby the gravitational mass for each body in
the universe can be consistently and universally chosen to equal its inertial
mass. To the best accuracy of all experiments performed to date, the ratio
of the gravitational mass (the mass that appears in Newton’s force law for
gravity) to the inertial mass (the mass that appears in the second law) of
any object is independent of both the total mass and of the composition of
the object. This means that no local experiments can distinguish nonrotat-
ing free fall in a gravitational field from uniform motion in the absence of
any gravitational fields. Likewise, local experiments cannot distinguish be-
tween being at rest in a uniform gravitational field and undergoing uniform
acceleration in the absence of any gravitational field (that is, in a rocket).
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3. Principle of covariance—in the special theory, all inertial observers are
equivalent. The general theory extends this idea by postulating the principle
of covariance. This principle is that all obsetrvers, inertial or not, observe the
same laws of physics. That means the laws of physics can be expressed in
terms of tensors, since tensors are geometric objects defined independent of
any coordinate system.

4. Correspondence principle—in weak gravitational fields with velocities
small compared to light, the general theory should make predictions that
approximate the predictions of gravitational behavior in Newtonian me-
chanics. As gravitational fields go to zero, the correspondence principle
states the predictions of the general theory should approach those of the
special theory.

5. Principle of minimal gravitational coupling—this principle postulates that
no terms explicitly containing the curvature should be added in making the
transition from the special theory to the general theory.

Newton’s first law tells us that in the absence of external force bodies move
along straight lines without acceleration. The preceding guiding principles sug-
gest that in the general theory, objects will move along the geodesics of spacetime.
For example, let us consider a family of geodesics that start out parallel. If grav-
itational effects in the region under consideration are uniform, the geodesics will
remain parallel. If there is a nonuniform gravitational field, the geodesics should
start to approach or recede. The change in separation, or geodesic deviation, is the
proper measure of the gravitational field. Near Earth’s surface, we often assume
the gravitational field is uniform over small regions. Thus, we assume two falling
bodies released side by side fall parallel. An experiment for larger separations or
longer fall times measures the nonuniformity of Earth’s gravitational field.

To illustrate this, let us consider an example of two balls separated horizontally
by a distance, d, which are dropped at the same time from the same height high
above Earth. Very close to either ball, and neglecting the gravitational mass of the
balls, local experiments will give results that allow us to treat the local region as
an inertial frame. Locally, gravity can be made to vanish by a choice of coordinate
frame. Let us choose this local free-fall frame for our observations. Locally this
satisfies the conditions for an inertial frame. However, as the balls fall toward
Earth, their separation, d, decreases. This change in separation, rather than the
fall toward Earth, is the local measure of the gravitational effect of Earth since it
can not be eliminated by a choice of frame. This is reflected by the general theory
statement that only the tides (differential effects) are real gravitational effects.
Any other gravitational effects can be locally eliminated by freely falling.

Now consider two geodesics as shown in Figure 7.5. We can define two vector
fields at any point. One field, denoted by u, gives the 4-velocity of motion along
the geodesic, while the other field, denoted by £, gives the separation to the next
geodesic. We assume at some time. 7, there were test particles at the head and tail
of the & vector.



326

Chapter 7 The Classical Mechanics of the Special Theory of Relativity

FIGURE 7.5 Tangent vector, 4, and deviation vector, &.

We shall use the proper time at the tail of the deviation vector and have the
head point to where the other test particle is at that time. In general, as the motion
progresses, the proper time of the first test particle will not be the same proper
time for the other test particle. A straightforward calculation, in the Newtonian
limit, for the example of two falling balls, gives for the space components of &
perpendicular to the direction toward Earth’s center,

— = R, (7.169)

where R depends upon the distance to Earth’s center and other physical constants.
Equation (7.169) says the acceleration in the separation of two geodesics is pro-
portional to their separation. A two-dimensional example is the geodesics on the
surface of a sphere. Consider two initially parallel geodesics on a sphere. These
geodesics will meet after they have traveled one-quarter of the circumference of
the sphere. For this case, Eq. (7.169) has R = 1/a?, where a is the radius of the
sphere.

If we analyze this problem in three or more dimensions, the relative accelera-
tion is written as D2£/ds? where ds is the length of the travel along the geodesic
and we use a D for the derivative since our coordinate system is completely arbi-
trary. The twists and turns in the coordinate system can cause changes in the com-
ponents of & even if its magnitude is not changing. As he developed more of the
theory, Einstein discovered that the mathematicians—in particular, Riemann—
had already developed the mathematical tools needed. The metric serves the role
of potentials and derivatives of the metric give the geometric forces. Since the
derivatives of the metric are not tensors, a combination of the derivatives and the
metric must be used. There are also problems introduced by the freedom of using
any coordinate system. Some of the changes are due to physical forces and others
are due to the choice of the coordinate system in analogy to the Coriolis effect in
a rotating coordinate system. The correct expression for the deviation of geodesic
motion is provided by a tensor named Riemann. It is constructed of linear comn-
binations of second derivatives of the metric contracted with the metric. Riemann
has slots for three vectors and one slot for a single one-form. If we put the tangent
vector into the second and fourth slots and the deviation vector into the third slot.
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Riemann produces
VuVué + Riemann(...,u.&. u) =0, (7.170)
where ¥, Vy = 25 In component notation, Eq. (7.170) is

d2g™ dxP _ dx®

— + R%,5 — &Y — =0. 7.171

a2 TR e § dt ¢ )
If we contract Riemarnn on slots 1 and 3, we produce a tensor called Ricci,

defined as

Ricci(u. v) = Riemann(w®, u, ey, v), (7.172)
whose components are
Ryv = R% 0. (7.173)
Another critical contraction produces the curvature scalar, called R
R = Ricci(w*, ¢y) = R%,. (7.174)

Of all these possible contractions of Riemann, only one tensor of rank (3) retains
all the differential symmetnies of Riemann. That tensor is called Einstemn (denoted
by ) and is defined as

G = Ricci — 3gR, (7.175)
with components
G“v = R“p - %g“uR. (7-]76)

Using T to denote the stress-energy tensor, Einstein’s field equations make Ein-
stein proportional to 7.

G =kT. 7.177)

These equations for weak gravitational fields and for speeds much less than
light approach Newtonian gravitational theory, and for no gravitational fields pro-
duce the results of the special theory. They also correctly predict all the measured
first- and second-order corrections to the special theory of relativity in experi-
ments thus far performed. In addition, the theory predicts the existence of gravita-
tional waves from moving masses. Although these waves have not, at this writing,
been directly observed, measured changes in the periods of several binary star
systems are consistent with the existence of such radiation existing.

Soon after Einstein proposed Eqs. (7.177), astronomers pointed out that the
solutions of these equations were not consistent with their observation of a static
universe that was neither expanding nor contracting. Einstein modified the equa-
tions by adding a term that was proportional to the metric tensor. The constant of
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proportionality, called the cosmological constant, was denoted by A giving
G+ Ag=kT. (7.178)

Soon after that, astronomers decided that the observational data showed that
the universe was expanding and the cosmological constant was not needed, and
most physicists dropped the term. Einstein said that the cosmological constant was
his greatest mistake. However, the early 21st century observational data on distant
galaxies suggests that the universe is accelerating as it expands. This would re-
introduce the cosmological constant into the field equations. The current terminol-
ogy, since this would be a A < 0, is to refer to the cosmological constant as *“dark
energy,” since it is a positive contribution to the right-hand side of Eq. (7.178).

DERIVATIONS

1. Consider a mechanical system of n particles, with a conservative potential consisting
of terms dependent only upon the scalar distance between pairs of particles. Show
explicitly that the Lagrangian for the system when expressed 1n coordinates derived
by 4 Galilean transformation differs in form from the original Lagrangian only by a
term that is a total ime denivative of a function of the position vectors. This is a special
case of invariance under a point transformation (cf. Derivation 10, Chapter 1).

2. Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle dé
counterclockwise from the x axis, by means of a similarity transformation applied to
Eq (7.16). Show durectly that the resulting matrix is orthogonal and that the inverse
matrx 15 obtained by substituting —v for v.

3. The Einstemn addition law can also be obtained by remembering that the second ve-
locity is related directly to the space components of a four-velocity, which may then
be transformed back to the initial system by a Lorentz transformation. If the second
system is moving with a speed v’ relative to the first in the direction of their z axes,
while a third system is moving relative to the second with an arbitrarily oriented ve-
locity v, show by this procedure that the magnitude of the velocity v between the
first and third system is given by

‘/1_512\/1_ﬁf/2
A S A

and that the components of v are

_ ;//1_)312 ﬁ_ﬁ/”m ﬁ_ﬂl'i'ﬂ:
Y A Y A Y

Here gY = v} /¢, and so forth.

4. Show that the magnitude of the velocity of the preceding exercise between the first
and the third systems can be given 1n general by
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10.

11.

12,

_ B +B"Y - (B x B

2
B a+p. Bﬂ’)z

. Show that the matrix R defined by Eq (7.21) has the form of a spatial rotation by doing

the matrix multiplication, and by examming the properties of the 3 x 3 submatrix with
elements R, ;. Prove that there cannot be two rotation matrices such that Eq. (7.21) is
satisfied; that is, R 15 umque. Finally, show that L can similarly be uniquely factored
into 4 rotation and a pure Lorentz transformation in the form

L=PR.

Show that to each plane wave there is associated a covariant four-vector mvolving the
frequency and the wave number. From the consequent transformation equations of the
components of the four-vector, derive the Doppler-effect equations.

. From the transformation properties of the world acceleration, show that the compo-

nents of the acceleration a are given in terms of the transformed aceeleration 2’ in a
system momentarily at rest with respect to the particle by the formulas

t

a":a_x a":i a',= az
d (1_ﬁ2)3/2‘ y 1-p2’ -7

the x axis being chosen in the direction of the relative velocity.

By expanding the equation of motion, Eq. (7.73), with Eq. (7.36) for the momentum
show that the force is parallel to the acceleration only when the velocity 15 either
parallel or perpendicular to the acceleration. Obtain expressions for the coefficients
of the acceleration in these two cases. In the older literature, these coefficients were
known as the longitudinal and transverse masses, respectively.

. A generalized potential suitable for use in a covariant Lagrangian for a single particle

U=—A4;,x*)u e’

where A, stands for a symmetric world tensor of the second rank and #" are the
components of the world velocity. If the Lagrangian is made up of Eq. (7.164) minus
U, obtain the Lagrange equations of motion. What is the Minkowsk: force? Give the
components of the force as observed in some Lorentz frame.

Show that if A satisfies the Lagrange equations, it identically satisfies Eq. (7 161)
on the basis of the homogeneity of A, by explicitly forming the total derivative with
respect to 8 that occurs 1n the equation.

In special relativity, it is not necessarily obvious that the velocity of system B as
observed in system A is the negative of the velocity vector of system A observed in
system B. From the orthogonahty properties of L, prove that the two vectors have
the same magnitude and are in fact the negative of each other. For simplicity, a pure
Lorentz transformation may be assumed, although this condition is not necessary for
the proof,

A set of transformations are said to have the group property if they possess the fol-
lowing four characteristics:
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¢ The transformation equivalent to two successive transformations (“product” of
transformations) is a member of the set.

¢ The product operation obeys the associative law.
o The identity transformation is a member of the set.
o The inverse of each transformation in the set is also a member of the set.

Prove that the sets of full Lorentz transformations and of restncted Lorentz transfor-
mation have (separately) the group property.

EXERCISES

13. Show by direct muluphcation of the vector form of the Loremz transformation,

Eqgs. (7.9), that
Pt o222,

14. A rocket of length Iy i its rest system is moving with constant speed along the z
axis of an inertial system. An observer at the origin of this system observes the ap-
parent length of the rocket at any time by noting the z coordinates that can be seen
for the head and tail of the rocket How does this apparent length vary as the rocket
moves from the extreme left of the observer to the extreme right? How do these re-
sults compare with measurements in the rest frame of the observer? (Note: observe,
not measure).

15. A beam of particles moving with uniform velocity collides with a collection of target
particles that are at rest in a particular system. Let o be the collision cross section
observed in this system. In another system. the mcident particles have a normalized
velocity By and the target particles a normalized velocity 8. If o is the observed
cross section 1n this system, show that

B x 32)2.
(81 — Br)?

Remember that collision rate must be invanant under a Lorentz transformation.

o =0y

16. For a “close™ satellite of Earth (semimajor axis approximately the radius of Earth)
calculate numencally the value of the Thomas precession rate. Compare the result
with the precession rate induced in the orbit because of the oblate figure of Earth.
Assume the satellite orbital plane is inchined at 30° to the equator.

17. Two particles with rest masses my and m» are observed to move along the observer’s
z axis toward each other with speeds vy and vy, respectively. Upon collision, they are
observed to coalesce into one particle of rest mass m+ moving with speed v4 relative
to the observer. Find m3 and v3 in terms of m, mo, vy. and vy. Would it be possible
for the resultant particle to be a photon, that is, m4 = 0, if neither m nor m5 are zero?

18. In the g disintegration considered in Exercise 17, Chapter 1, the electron has a mass
equivalent to a rest energy of 0.511 MeV, while the neutrino has essentially no mass
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19,

21,

22,

23.

‘What are the total energies carned away by the electron and neutrino? What fraction of
the nuclear mass is converted into kinetic energy (including the electron rest energy)?

A meson of mass my at rest disintegrates into a meson of mass m,, and a neutrino of
effectively zero mass Show that the kinetic energy of motion of the 1 meson 1s

T = (my — mu.)202.

2my
A w1 meson of rest mass 139.6 MeV collides with a neutron (rest mass 939.6 MeV)
stationary in the laboratory system to produce a K T meson (rest mass 494 MeV) and
a A hyperon (rest mass 1116 MeV). What is the threshold energy for this reaction n
the laboratory system?

A photon may be descnbed classically as a particle of zero mass possessing never-
theless a momentum A/i = hv/c, and therefore a kinetic energy hv. If the photon
collides with an electron of mass m at rest, it will be scattered at some angle @ with a
new energy hv’. Show that the change in energy is related to the scattening angle by
the formula

!

.28
A _,1=23L¢sm2-2-.

where A, = hA/mc, 18 known as the Compton wavelength. Show also that the knetic
energy of the recoil motion of the electron 1s

— 2 (Lf) sin?
1+2(%)wn

A photon of energy £ collides at angle # with another photon of energy E. Prove that
the rinimum value of £ permitting formation of a pair of particles of mass m is

N

w

7
2

£ 2m2ct
"= B —cos8)
The theory of rocket motion developed in Exercise 13, Chapter 1. no longer applies in
the relativistic region, in part because there 15 no longer conservation of mass. Instead,
all the conservation laws are combined into the conservation of the world momentum;
the change in each component of the rocket’s world momentum in an infinitesimal
time dt must be matched by the value of the same component of p, for the gases
ejected by the rocket in that time interval. Show that 1t there are no external forces
acting on the rocket, the differential equation for its velocity as a function of the mass

1S
dv v?
mEE’*'Cl(l—c—z) -—-0;

where g is the constant velocity of the exhaust gases relative to the rocket. Verify that
the solution can be put in the form
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25.

26.

27.

29,

30.

| (%)2(1/%
- (%)Za/c’

my being the initial mass of the rocket. Since mass 1s not conserved, what happens to
the mass that is lost?

8=

A particle in hyperbolic motion starts from the origin at ¢ = 0. Find the time 13 such
that if a photon is emitted from the origin after zg, it will never catch up with the
particle.

A particle of rest mass m, charge g, and initial velocity vq enters a uniform electnic
field E perpendicular to vo. Find the subsequent trajectory of the particle and show
that it reduces to a parabola as the limit ¢ becomes infimte.

Show that the relativistic motion of a particle in an attractive inverse-square law of
force is a precessing ellipse. Compute the precession of the perihelion of Mercury
resulting [rom this effect. (The answer, about 7” per century, is much smaller than
the actual precession of 43" per century that can be accounted for correctly only by
general relauvity. The other planets produce a precession greater than 5.000” per
century.)

Starting from the cquation of motion (7.73), derive the relativistic analog of the virial
theorem, which states that for motions bounded in space and such that the velocities
involved do not approach indefinitely close to ¢, then

Ig+T=-FT,

where Ly is the form the Lagrangian takes in the absence of external forces. Note that
although nerther Lo nor T corresponds exactly to the kinetic energy in nonrelativistic
mechanics, their sum, L + T, plays the same role as twice the kinetic energy in the
nonrelativistic varial theorem, Eq. (3.26).

. Let ¢ and ey be the basis vectors for a Cartesian coordinate system m a two-

dimensional Euchidean space that contains a crystal whose lattice vectors are a = ¢
and b = ¢; + €. Use the underlying Euchdean geometry to determine that the recip-
rocal lattice vectors are A = e; — ez and B = e,. Using the a, b pair as basis vectors,
determine the metric tensor g necessary for A and B to be the 1-forms as defined by
Eqgs. (7.34") and (7.49).

Using Maple or Mathematica calculate the Lorentz transformation matrix in Eq. (7.17),
then without assuming that the velocities in the {rame §' are small, find the exact
Lorent. boost from S to §”, (generalization of Eq. (7.20)) and the rotation (general-
ization of Eq. (7.21)). Show that your results reduce to Eqs. (7.20) and (7.21).

Using Maple or Mathematica or a similar program calculate the Einstein field equa-
tions for sphencal coordinates assuming 7),, = 0 everywhere except possibly for
r = 0, where the coordinate system is undefined, The most general spherical static
metric corresponds (o an interval given by

ds? = "D e? ds? — A0 gr? — 2492 4 sin? 0 dg?),

where r, 8, and ¢ correspond to the usual three-dimensional spherical coordinates
Solve these equations using an integration constant m to obtain the Schwarzchild so-
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3L

32.

lution for a point source of mass m. As you will discover, these coordinates have a
singularity at r = 2m. Show that this is a coordinate singularity (a singularity deter-
mined by the choice of coordinates) rather than a physical singularity by examining
the components of Riemann as r crosses 2m.

To show that the word “relativity” in the special theory of relativity does not have its
ordinary meaning, consider a disk rotating mn an inertial frame about an axis fixed at
1ts center and perpendicular to the disk. Mounted on the edge of the disk are mirrors
arranged so that light emutted tangentially from a point on the disk is reflected tan-
gentially around the disk back to the starting location. Compare the behavior of light
emitted 1n the direction of rotation (assumed clockwise) to the behavior of light emit-
ted in the opposite direction. Now consider a pulse of light emitted by a source on the
axis and used to synchronize the clocks on the perimeter. Since clocks are commonly
sytichronized by light and distance in the special theory (elapsed time = distance/c¢),
what does this say about the absolute sense of rotation in the special theory?

Show that the space components of Eq. (7.68) are 1dentical to the components m the
equation on the preceding line.
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The Hamilton Equations
of Motion

The Lagrangian formulation of mechanics was developed largely in the first two
chapters, and most of the subsequent discussion has been in the nature of appli-
cation, but still within the framework of the Lagrangian procedure. In this chap-
ter we resume the formal development of mechanics, turning our attention to an
alternative statement of the structure of the theory known as the Hamiltonian for-
mulation. Nothing new is added to the physics involved; we simply gain another
(and more powerful) method of working with the physical principles already es-
tablished. The Hamiltonian methods are not particularly superior to Lagrangian
techniques for the direct solution of mechanical problems. Rather, the usefulness
of the Hamiltonian viewpoint lies in providing a framework for theoretical exten-
sions in many areas of physics. Within classical mechanics it forms the basis for
further developments, such as Hamilton—Jacobi theory, perturbation approaches
and chaos. Outside classical mechanics, the Hamiltonian formulation provides
much of the language with which present-day statistical mechanics and quantum
mechanics is constructed. We shall assume in the following chapters that the me-
chanical systems are holonomic and that the forces are monogenic, that is, derived
either from a potential dependent upon position only, or from velocity-dependent
generalized potentials of the type discussed in Section 1.5.

LEGENDRE TRANSFORMATIONS AND THE
HAMILTON EQUATIONS OF MOTION

In the Lagrangian formulation (nonrelativistic), a system with n degrees of free-
dom possesses n equations of motion of the form

2 (E) _a =0. 8.1
dr \ 9g, g,

As the equations are of second order, the motion of the system is determined for
all time only when 2# initial values are specified, for example, the n ¢,’s and n
¢,’s at a particular time #;, or then n g;’s at rwo times, #; and 2. We represent
the state of the system by a point in an n-dimensional configuration space whose
coordinates are the n generalized coordinates g; and follow the motion of the
system point in time as it traverses its path in configuration space. Physically, in
the Lagrangian viewpoint a system with » independent degrees of freedom is a
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problem in n independent variables g;(¢), and ¢, appears only as a shorthand for
the time derivative of ¢,. All n coordinates must be independent. In the Hamil-
tonian formulation there can be no constraint equations among the coordinates.
If the n coordinates are not independent, a reduced set of m coordinates, with
m < n, must be used for the formulation of the problem before proceeding with
the following steps.

The Hamiltonian formulation is based on a fundamentally different picture.
We seek to describe the motion in terms of first-order equations of motion. Since
the number of initial conditions determining the motion must of course still be 2n,
there must be 2» independent first-order equations expressed in terms of 2r inde-
pendent variables. Hence, the 2n equations of the motion describe the behavior
of the system point in a phase space whose coordinates are the 2r independent
variables. In thus doubling our set of independent quantities, it is natural (though
not inevitable) to choose half of them to be the n generalized coordinates g;. As
we shall see, the formulation is nearly symmetric if we choose the other half of
the set to be the generalized or conjugate momenta p, already introduced by the
definition (cf. Eq. (2.44)):

_9Lg;.4,,0

- (no sum on j) (8.2)
04,

1

where the j index shows the set of ¢’s and §’s. The quantities (g, p) are known
as the canonical variables.*

From the mathematical viewpoint, it can however be claimed that the q’s and
4's have been treated as distinct variables. In Lagrange’s equations, Eq. (8.1), the
partial derivative of L with respect to ¢; means a derivative taken with all other ¢’s
and all ¢’s constant. Similarly, in the partial derivatives with respect to ¢, the ¢’s
are kept constant. Treated strictly as a mathematical problem, the transition from
Lagrangian to Hamiltonian formulation corresponds to changing the variables in
our mechanical functions from (g, 4, t) to (g, p, t), where p is related to ¢ and
g by Egs. (8.2). The procedure for switching variables in this manner is provided
by the Legendre transformation, which is tailored for just this type of change of
variable.

Consider a function of only two variables f(x, y), so that a differential of f
has the form

df =udx+vdy, (8.3)
where
af of
- = L 4
" ax v oy 84

*Unless otherwise specified, 1n this and subsequent chapters the symbol p wall be used only for the
conjugate or canonical momentum. When the forces are velocity dependent, the canonical momentum
will differ from the corresponding mechanical momentum (cf. Eg. (2 47)).
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We wish now to change the basis of description from x, y to a new distinct set of
variables u, y, so that differential quantities are expressed in terms of the differ-
entials du and dy. Let g be a function of « and y defined by the equation

g=f—ux. (8.5)
A differential of g is then given as
dg =df —udx —xdu,
or, by (8.3), as
dg = vdy —xdu,

which is exactly in the form desired. The quantities x and v are now functjons of
the variables # and y given by the relations

og _% 8.6)

= —— V=

ou’ ay

which are the analogues of Egs. (8.4).

The Legendre transformation so defined is used frequently in thermodynamics.
The first law of thermodynamics relates the differential change in energy, dU, to
the cotresponding change in heat content, dQ, and the work done, dW:

dU =dQ —dWw. 8.7
For a gas undergoing a reversible process, Eq. (8.7) can be written as
dU =TdS — PdV, (8.8)

where U(S, V) is written as a function of the entropy, S, and the volume, V,
where the temperature, T, and the gas pressure, P, are given by

T = % and P= —%%. (8.9)
The enthalpy, H (S, P) is generated by the Legendre transformation
H=U-+PV, (8.10)
which gives
dH=TdS+VdP. (8.11)
where
il v

an .
N aP
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Additional Legendre transformations,

F=U-TS
(8.12)
G=H-TS,

generate the Helmholtz free energy, F (T, V), and the Gibbs free energy, G(7, P).

The transformation from (g, 4, t) to (g, p, t) differs from the type considered
in Eqs. (8.3) to (8.12) only in that more than one variable is to be transformed.
We begin by writing the differential of the Lagrangian, L(g, 4, t), as

aL oL
dL = —d —dq, + —dt. 8.13
8q1 ql + aq-‘ Q! + at ( )
The canonical momentum was defined in Eq. (2.44) as p; = dL/94,; substituting
this into the Lagrange equation (8.1), we obtain

aL
= —, 8.14
4 g, ( )
so Eq. (8.13) can be written as
. . 0oL ,
dL = p,dqg; + p, dg, + —d:. (8.13)

L H

The Hamiltonian A (g, p, t) is generated by the Legendre transformation

H(q: P:t) =q.1Px —-L(q?q.7 t): (8'15)
which has the differential

oL

—, 8.16
% (8.16)

dH =q’ldp1 - [31 dqi -
where the term p, dg; is removed by the Legendre transformation. Since d H can
also be written as
oH oH oH

dg, + —dp, + ——dr, (8.17)

di = op, ar

we obtain the 2n + 1 relations

. o0H
g = T—
op;
1
] oH (8.18)
D %
_3L _ 34 (8.19)
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Equations (8.18) are known as the canonical equations of Hamilton; they consti-
tute the desired set of 2n first-order equations of motion replacing the n second-
order Lagrange equations.*

The first half of Hamilton’s equations give the ¢,’s as functions of (g, p, 1).
They form therefore the inverse of the constitutive equations (8.2), which define
the momenta p, as functions of (g, ¢, ¢). It may therefore be said that they provide
no new information. In terms of solving mechanical problems by means of the
canonical equations, the statement is correct. But within the framework of the
Hamiltonian picture, where H(g, p. ) is some given function obtained no matter
how, the two halves of the set of Hamiltonian equations are equally independent
and meaningful. The first half says how ¢ depends on g, p, and z; the second says
the same thing for p.

Of course, the Hamiltonian H is constructed in the same manner, and has iden-
tically the same value, as A, the energy function defined in Eq. (2.53). But they
are functions of different variables: Like the Lagrangian, 4 is a function of g, ¢
(and possibly ¢), while H must always be expressed as a function of ¢, p (and
possibly ¢). It is to emphasize this difference in functional behavior that differ-
ent symbols have been given to the quantities even though they have the same
numerical values.

Nominally, the Hamiltonian for each problem must be constructed via the La-
grangian formulation. The formal procedure calls for a lengthy sequence of steps:

1. With a chosen set of generalized coordinates, g;, the Lagrangian L(g,, ¢, t)
= T — V is constructed.

2. The conjugate momenta are defined as functions of g,, ¢,, and ¢ by
Eqgs. (8.2).

3. Equation (8.15) is used to form the Hamiltonian. At this stage we have some
mixed function of ¢;, g;, p,, and ¢.

4. Equations (8.2) are then inverted to obtain ¢, as functions of (g, p, £). Pos-
sible difficulties in the inversion will be discussed below,

5. The results of the previous step are then applied to eliminate § from H so
as to express it solely as a function of (g, p, 1).

Now we are ready to use the Hamiltonian in the canonical equations of motion.
For many physical systems it is possible to shorten this drawn-out sequence

quite appreciably. As has been described in Section 2.7, in many problems the

Lagrangian is the sum of functions each homogeneous in the generalized veloc-

*Canonicdl 15 used here presumably in the sense of designating a simple, general set of standard
equations. It appears that the term was first introduced by C. G. 1. Jacobi 1n 1837 (Compies rendus de
{"Académie des Sciences de Paris, 5.p 61) but in a slightly different context referring o an application
of Hamilton's cquations of motion to perturbation theory. Although the term rapidly gaihed common
usage, the reason for its introduction appatently remained obscure even to contemporaries. By 1879,
only 45 ycars afier Hamulton explicitly introduced s equations, Thomson (Lord Kelvin) and Tan
were moved by the adjective “canonical” 10 exclaim “Why 1t has been so called would be hard to

say
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ities of degree 0, 1, and 2, respectively. In that case, H by the prescription of
Eq. (8.15) is given by (cf. Egs. (2.53) and (2.55))

H= q.z Pt — L= qx D — [LO(qn t)+ Ly (qu t)ék + LZ(ql, t)ék(}m] (820)

(no sum on i in the square brackets) where Ly is the part of the Lagrangian that is
independent of the generalized velocities, L represents the coefficients of the part
of the Lagrangian that is homogeneous in g, in the first degree, and L, is the part
that is homogeneous in ¢, in the second degree. Further, if the equations defining
the generalized coordinates don’t depend on time explicitly, then Lagigm = T
(the kinetic energy), and if the forces are derivable from a conservative potential
V (that is, work is independent of the path), then Ly = —V. When both these
conditions are satisfied, the Hamiltonian is automatically the total energy:

H=T+V=E. (8.21)

If either Eq. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 above
is eliminated.

We can at times go further. In large classes of problems, it happens that Ly isa
quadratic function of the generalized velocities and L is a linear function of the
same variables with the following specific functional dependencies:

L(gi, .. t) = Lo(g, ) + Giau (g, ) + 2T, (g, 1), (8.22)

where the a,’s and the T;’s are functions of the ¢’s and ¢.

The algebraic manipulations required in steps 2-5 can then be carried out, at
least formally, once and for all. To show this, let us form the ¢;’s into a single
column matrix g. Under the given assumptions the Lagrangian can be written as

L(g.4.t) = Lo(g.t) + §a + 3qT4q, (8.23)

where the single row matrix f] has been written explicitly as the transpose of a
single column matrix, ¢. Here a is a column matrix, and T is a square n X n matrix
(much like the corresponding matrix introduced in Section 6.2). The elements of
both are in general functions of ¢ and ¢. To illustrate this formalism, let us consider
the special case where ¢, = {x, y, z} and T is diagonal. We would then write

1. . m 0 0[]
5T4= 5G9 |0 m 0|7 =5(;z:2+5:2+22) (8.24a)
0 0 m F4
and
da= (52 |ay | =ari +ayy+az=a-r. (8.24b)
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Tn this notation the Hamiltonian. H = gp — L, becomes
H=q(p—a)— 3q1q — L,. (8.24¢)

The conjugate momenta, considered as a column matrix p, is then, by Eq. (8.2),
given as

p=Tq+a, (8.25)
which can be inverted (step 4) to the column vector ¢
q=T"l(p—a). (8.26a)

This step presupposes that T~! exists, which it normally does by virtue of the
positive definite property of kinetic energy.
The corresponding equation for q is

q=p-HT"" (8.26b)

To obtain the correct functional form for the Hamiltonian, Eqgs. (8.26) must be
used to replace § and ¢, yielding the final form for the Hamiltonian:

H(g,p.O) =3@-T ' (p-a) - Lolg.1). (8:27)

If the Lagrangian can be written in the form of Eq. (8.23), then we can imme-
diately skip the intervening steps and write the Hamiltonian as Eq. (8.27). The
inverse matrix T~ can usually most easily be obtained straightforwardly as

T

T!1= 5, (8.28)
Tl

where T, is the cofactor matrix whose elements (T,),x are (—1)/** times the

determinant of the matrix obtained by striking out the jth row and the kth column

of T.

In the example Eq. (8.24a), these three matrices are given explicitly by

m 0 0 —,3; 0 0
T=[0m 0|, T'=|0 L o0 and
[0 0 m 0 o%
(m 0 O
T.=|0 m* o0{,
L0 0 m?

and the determinant |T) = m?>. It is easy to see that for the usual case when T is
diagonal, then T~ is also diagonal with elements that are just the reciprocals of
the corresponding elements of T.
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A number of exercises in applying this formalism to various mechanical sys-
tems will be found in the problems at the end of the chapter. Two very simple
examples are considered here because they illustrate some important aspects of
the technique. First consider the spatial motion of a particle in a central force
field, using spherical polar coordinates (r, 8. ¢) for the generalized coordinates.
The potential energy is some function V'(r) and the kinetic energy is

2
T=""= 262+ r?sin 042 + 1267, (8.28")
Clearly the Hamiltonian has the form of Eq. (8.21) and corresponds to the total

energy T + V. Since T is diagonal the form of H is, by inspection,

2
1 Py, Py
H(r,0, pr,pa, pp) = — | P2+ = V). 8.29
(r, 8, pr. pa, py) . (p, +ot e e + V() (8.29)
Note that the Hamiltonian would have a different functional form if the gener-
alized coordinates were chosen to be the Cartesian coordinates x, of the particle.
If we make that choice, then the kinetic energy has the form

T— @i _ mx, %, '
2 2
s0 that the Hamiltonian is now
Hx, p) =22 L v, (8.30)
2m

It is sometimes convenient to form the canonical momenta p, conjugate to x; into
a vector p such that the Hamiltonian can be written as

Hx, p) = %13 + Vo). 8.31)

We can of course take the components of p relative to any coordinate system
we desire, curvilinear spherical coordinates, for example. But it is important not to
confuse, say, ps with the & component of p, designated as (p)g. The former is the
canonical momentum conjugate to the coordinate 8; the latter is the ¢ component
of the momentum vector conjugate to the Cartesian coordinates. Dimensionally.
it is clear they are quite separate quantities; pg is an angular momentum, (p)g is a
linear momentum., Whenever a vector is used from here on (o represent canonical
momenta it will refer to the momenta conjugate to Cartesian position coordinates.

For a second example, let us consider a single (nonrelativistic) particle of mass
m and charge ¢ moving in an electromagnetic field. By Eq. (1.63), the Lagrangian
for this system is

L=T—V=%mv2—q¢+qA-v.

where the scalar potential term. —g¢, is the Lq term of the Lagrangian as ex-
pressed in Eq. (8.22) and the vector potential term, gA « v, is the L; term.
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Using Cartesian position coordinates as generalized coordinates, the La-
grangian can also be written as

mxi,; %,
L =
2

where the potentials ¢ and A are in general functions of x, and the time.

There is now a linear term in the generalized velocities such that the matrix
a has the elements g A,. Because of this linear term in V, the Hamiltonian is not
T + V. However, it is still in this case the total energy since the “potential” energy
in an electromagnetic field is determined by ¢ alone. The canonical momenta,
either by Eq. (8.2) or Eq. (8.25), are

+9A % —q9, (8.32)

pi =mx; +qA, (8.33)
and the Hamiltonian (cf. Eq. (8.27)) is

(pr —qA)(p —qA)

H =
2m

+q¢, (8.34)

which is the total energy of the particle. Again, the momenta p, can be formed
into a vector p and H written as

_ 1. 2
—Zm(P qA) 4+ q¢, (8.35)

and remembering that p refers only to momenta conjugate to x;.

It is clear that Hamilton’s equations of motion do not treat the coordinates and
momenta in a completely symmetric fashion. The equation for p has a minus sign
that is absent in the equation for 4. Considerable ingenuity has been exercised
in devising nomenclature schemes that result in entirely symmetric equations,
or combine the two sets into one. Most of these schemes have only curiosity
value, but one has proved to be an elegant and powerful tool for manipulating the
canonical equations and allied expressions.

For a system of n degrees of freedom, we construct a column matrix 1 with 2n
elements such that

m =4, Ni4n = s i<n. (8.36)

Similarly. the column matrix 9 H /31 has the elements

() 28, () _en
m/, a‘b’ N i+tn ap",

Finally, let ] be the 2n x 2n square matrix composed of four n X n zero and unit
matrices according to the scheme
0 1
)= [_1 O] (8.38a)

IA

n, (8.37)
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with the following transpose matrix, which is its inverse

] = [‘1’ _01] : (8.38b)
which means
l=jj=1= [; ‘1’] (8.38¢)
So
J=—)=J"" (8.384)
and
2 =-1, (8.38€)
and the determinant is
Jl = +1. (8.38f)

Here 0 is the n x » matrix all of whose elements is zero, and 1 is the standard
n X r unit matrix. Hamilton’s equations of motion can then be written in compact
form as

=) (8.39)

al [0 0 1 a[-p
@2|_{(0 0 0 1]|-p
Bl (-1 0 o ol|a | (840
j72) 0 -1 0 0 @

where use was made of Eqgs. (8.37) and (8.18). This method of displaying the
canonical equations of motion will be referred to as Hamilton’s equations in ma-
trix or symplectic* notation. In subsequent chapters we shall frequently employ
this matrix form of the equations,

CYCLIC COORDINATES AND CONSERVATION THEOREMS

According to the definition given in Section 2.6, a cyclic coordinate g, is one that
does not appear explicitly in the Lagrangian; by virtue of Lagrange’s equations

*The term symplectic comes from the Greek for “intertwined,” particularly appropriate for Hamulton’s
equations where § is matched with a derivative with respect to p and p similarly with the negative of
a g denvative H. Weyl first mtroduced the term 1n 1939 in his book The Classical Groups.
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its conjugate momentum p, is then a constant. But comparison of Eq. (8.14) with
Eq. (8.16) has already told us that

. oL dH
Py ag, 3q,

A coordinate that is cyclic will thus also be absent from the Hamiltonian.* Con-
versely if a generalized coordinate does not occur in H, the conjugate momentum
is conserved. The momentum conservation theorems of Section 2.6 can thus be
transferred to ihe Hamiltonian formulation with no more than a substitution of H
for L. In particular, the connection between the invariance or symmetry proper-
ties of the physical system and the constants of the motion can also be derived in
terms of the Hamiltonian. For example, if a system is completely self-contained,
with only internal forces between the particles, then the system can be moved as
a rigid ensemble without affecting the forces or subsequent motion. The system
is said to be invariant under a rigid displacement. Hence, a generalized coordinate
descnbing such a rigid motion will not appear explicitly in the Hamiltonian, and
the corresponding conjugate momentum will be conserved. If the rigid motion is
a ranslation along some particular direction, then the conserved momentum is the
corresponding Cartesian component of the total linear (canonical) momentum of
the system. Since the direction is arbitrary, the total vector linear momentum is
conserved. The rigid displacement may be a rotation, from whence it follows that
the total angular momentum vector is conserved. Even if the system interacts with
external forces, there may be a symmetry in the situation that leads to a conserved
canonical momentum. Suppose the system is symmetrical about a given axis so
that H is invariant under rotation about that axis. Then H obviously cannot in-
volve the rotation angle about the axis and the particular angle variable must be a
cyclic coordinate. It follows, as in Section 2.6, that the component of the angular
momentum about that axis is conserved.

The considerations concerning /4 in Section 2.7 have already shown that if L
(and in consequence of Eq. (8.15), also H) is not an explicit function of #, then
H is a constant of motion. This can also be seen directly from the equations of
motion (8.18) by writing the total time derivative of the Hamiltonian as

dH 0H +3H,+8_H
a9 T o P T e

In consequence of the equations of motion (8.18), the first two sums on the right
cancel each other, and it therefore follows that

—_— = ——. (8.41)

*This conclusion also follows from the defimtion of Eq (8.15). for H differs from —L only by p, 4,.
which does not involve ¢, explicitly.

TThe relanon between conservation laws, symunetry of the Lagrangian, (and the Hamiltoman) of the
system is called Noether’s theorem. The formal proof is given in Section 13 7.
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Thus if ¢ doesn’t appear explicitly in L, it will also not be present in H, and H
will be constant in time.

Further, it was proved in Section 2.7 that if the equations of transformation that
define the generalized coordinates (1.38),

T =Trlds .- dns 1),

do not depend explicitly upon the time, and if the potential is velocity indepen-
dent, then H is the total energy, T + V. The identification of H as a constant of the
motion and as the total energy are two separate matters, and the conditions suffi-
cient for the one are not enough for the other. It can happen that the Egs. (1.38)
do involve time explicitly but that H does not. In this case, H is a constant of
the motion but it is not the total energy. As was also emphasized in Section (2.6),
the Hamiltonian is dependent both in magnitude and in functional form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — V, and a change of generalized coordinates within that
prescription may change the functional appearance of L but cannot alter its mag-
nitude. On the other hand, use of a different set of generalized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different quan-
tity for the Hamiltonian. It may be that for one set of generalized coordinates H
is conserved, but that for another it varies in time.

To illustrate some of these points in a simple example, we may consider a
somewhat artificial one-dimensional system. Suppose a point mass m is attached
to a spring, of force constant k, the other end of which is fixed on a massless cart
that is being moved uniformly by an external device with speed vy (cf. Fig. 8.1).
If we take as generalized coordinate the position x of the mass particle in the
stationary system, then the Lagrangian of the system is obviously

22
Loy #,0) =T~V = ’-"—;— - l%(x — wor)2. (8.42)

(For simplicity, the origin has been chosen so that the cart passes through it at
t = 0.) The corresponding equation of motion is clearly

mi = —k(x — vgt).

—

OO—"00 _
?'.—'X“i

FIGURE 8.1 A harmonic oscillator fixed to a uniformly moving cart.
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An obvious way of solving this equation is to change the unknown to x'(z)
defined as

x' =x — vpt, (8.43)
and noting that ¥’ = ¥, the equation of motion becomes
mx' = —kx'. (8.44)

From Eq. (8.43), x’ is the displacement of the particle relative to the cart;
Eq. (8.44) says that to an observer on the cart the particle exhibits simple har-
monic motion, as would be expected on the principle of equivalence in Galilean
relativity.

Having looked at the nature of the motion, let us consider the Hamiltonian
formulation. Since x is the Cartesian coordinate of the particle, and the potential
does not involve generalized velocities, the Hamiltonian relative to x is the sum
of the kinetic and potential energies, that is, the total energy. In functional form
the Hamiltonian is given by

Pk
Hx,p.) =T +V = — + =(x — ). (8.45)
2m 2
The Hamiltonian is the total energy of the system, but since it is explicitly a func-
tion of ¢, it is nor conserved. Physically this is understandabie; energy must flow
into and out of the “external physical device” to keep the cart moving uniformly
against the reaction of the oscillating particle.*

Suppose now we formulated the Lagrangian from the start in terms of the rel-

ative coordinate x'. The same prescription gives the Lagrangian as

Lx', %) = % +mivg 4 =0 (8.46)

In setting up the corresponding Hamiltonian, we note there is now a term linear
in &/, with the single component of a being mvy. The new Hamiltonian is now
- mug)? kx'? mv%

13 /7 7
H'(x', p) o > > (8.47)

Note that the last term is a constant involving neither x’ nor p’; it could, if we
wished, be dropped from H’ without affecting the resultant equations of motion.
Now H' is not the total energy of the system, but it is conserved. Except for the
last term, it can be easily identified as the total energy of motion of the particle
relative to the moving cart. The two Hamiltonian’s are different in magnitude.

*Put another way, the moving carl comstitutes 4 time-dependent constraint on the particle, and the
force of the constraint does do work in actual (nor virtual) displacement of the system.
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{a) (b)

FIGURE 8.2 Vibrating dumbbell under two conditions: (a) freely oscillating, and (b) os-
ciflating with mass m3 kept at a constant velocity

time dependence, and functional behavior. But the reader can easily verify that
both lead to the same motion for the particle.

Additional insight into the problem of the mass cart previously discussed can
be gained by considering a dumbbell of two masses connected by a spring of
constant k. We shall consider the case where the center of mass of the dumbbell
is in constant motion at a speed vp along the direction determined by the spring
and allow oscillations of the masses only along this direction. This i1s shown in
Fig. 8.2, where C-O-M denotes the center of mass.

The dumbbell is made to vibrate while its center of mass has an initial velocity
vp. It will continue with this velocity with uniform translational motion. This
translational motion will have no effect on the oscillations. The motion of the
center of mass and the motion relative to the center of mass separate as they do
in the Kepler problem. Once the motion is started, energy is conserved and the
Hamiltonian is the total conserved energy. The situation is different if the mass
m2 moves at the constant speed vy since a periodic force is applied. The center
of mass and the mass m| then oscillate relative to m». Since a changing external
force must be applied to the system to keep m at the constant velocity vy, the
Hamiltonian is no longer conserved, nor is the Hamiltonian the total energy.

ROUTH’S PROCEDURE

Tt has been remarked that the Hamiltonian formulation is not particularly helpful
in the direct solution of mechanical problems. Often we can solve the 2x first-
order equations only by eliminating some of the variables, for example, the p
variables, which speedily leads back to the second-order Lagrangian equations of
motion, But an important exception should be noted. The Hamiltonian procedure
is especially adapted to the treatment of problems involving cyclic coordinates.

Let us consider the situation in Lagrangian formulation when some coordinate,
say gn, is cyclic. The Lagrangian as a function of ¢ and 4 can then be written

L= L(QI’---,Qn—H C}l,--wén; I)
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All the generalized velocities still occur in the Lagrangian and in general will be
functions of the time. We still have to solve a problem of n degrees of freedom,
even though one degree of freedom corresponds to a cyclic coordinate. A cyclic
coordinate in the Hamiltonian formulation, on the other hand, truly deserves its al-
ternative description as “ignorable,” for in the same situation p, is some constant
o, and H has the form

H=Hgi,....qn-1i Pls..-s Pn—1; @ 1).

In effect, the Hamiltonian now describes a problem involving only n — 1 coordi-
nates, which may be solved completely ignoring the cyclic coordinate except as
it is manifested in the constant of integration «, to be determined from the initial
conditions. The behavior of the cyclic coordinate itself with time is then found by
integrating the equation of motion

oH
T da’

The advantages of the Hamiltonian formulation in handling cyclic coordinates
may be combined with the Lagrangian conveniences for noncyclic coordinates by
a method devised by Routh. Essentially, we carry out a mathematical transforma-
tion from the g, ¢ basis to the ¢, p bass only for those coordinates that are cyclic,
obtaining their equations of motion in the Hamiltonian form, while the remain-
ing coordinates are governed by Lagrange equations. If the cyclic coordinates are
labeled g+1, ..., gn, then a new function R (known as the Routhian) may be
introduced, defined as

dn

n
R(q.l!“"qn; q"l"'wéi; Pr+1a---’Pn; I)= Z P:éz _Lv (8'48)
=541

which is equivalent to writing
R(qlr'-'!qn; qls ---’q.s; ps-}-_la-o’s_pn; t) =
Hcycl(!’a-i—l, N 2 Lnoncyd(‘]h coendst g1y gs). (8.49)

It is easy to show for the s nonignorable coordinates, the Lagrange equations
d (OR aR
—{—}—-——=0, i=1,...,s (8.50)

are satisfied. while for the n —s ignorable coordinates, Hamilton's equations apply
as

— =—p, =0, and — =g, i=s+1,...,n (8.51)
3, D o a

A simple, almost trivial, example may clarify Routh’s procedure and the phys-
ical significance of the quantities involved. Consider the Kepler problem investi-
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gated in Section 3.7, that of a single particle moving in a plane under the influence

of the inverse-square central force f (r) derived from the potential V (r) = —k/r".
The Lagrangian is then

_m o5 ok
L= 07 +r8%) + =

As noted before, the ignorable coordinate is &, and if the constant conjugate mo-
mentum is denoted by pg, the corresponding Routhian (8.49) is

2
. Py 1 .2 k
R Y T reems— —— —_—
(7> Po) 2~ 20 T w

Physically we see that the Routhian is the equivalent one-dimensional potential
V’/(r) minus the kinetic energy of radial motion.

Applying the Lagrange equation (8.50) to the noncyclic radial coordinate r,
we obtain the equation of motion (3.11)

2
. by | nk
r — ﬁ + _—rn+1 = 0 (852)
Applying Hamilton’s equation (8.51) to the cyclic variable &, we obtain the pair
of equations

pe=0 and 22 -4 (8.53)

whose solution is the same as Eq. (3.8),
py = mr26 = [ = constant.

Typically, Routh’s procedure does not add to the physics of the analysis pre-
sented earlier in Chapter 3, but it makes the analysis more automatic. In compli-
cated problems with many degrees of freedom, this feature can be a considerable
advantage. it is not surprising therefore that Routh’s procedure finds its greatest
usefulness in the direct solution of problems relating to engineering applications.
But as a fundamental entity, the Routhian is a sterile hybrid, combining some of
the features of both the Lagrangian and the Hamiltonian pictures. For the devel-
opment of various formalisms of classical mechanics, the complete Hamiltonian
formulation is more fruitful.

THE HAMILTONIAN FORMULATION OF RELATIVISTIC MECHANICS

As with the Lagrangian picture in special relativity, two attitudes can be taken to
the Hamiltonian formulation of relativistic mechanics. The first makes no pretense
at a covariant description but instead works in some specific Lorentz or inertial
frame. Time as measured in the particular Lorentz frame is then not treated on a
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common basis with other coordinates but serves, as in nonrelativistic mechanics,
as a parameter describing the evolution of the system. Nonetheless, if the La-
grangian that leads to the Hamiltonian is itself based on a relativistically invariant
physical theory (for example, Maxwell’s equations and the Lorentz force), then
the resultant Hamiltonian picture will be relativistically correct. The second ap-
proach of course attempts a fully covariant description of the Hamiltonian picture,
but the difficulties that plagued the corresponding Lagrangian approach (cf. Sec-
tion 7.9) are even fiercer here. We shall consider the noncovariant method first.
For a single-particle Lagrangian of the form of Eq. (7.136),

L=-mc?/1-82-v,

we have already shown that the Hamiltonian (in the guise of the energy function
h) is the total energy of the system:

H=T+V.
The energy T can be expressed in terms of the canonical momenta p, (Eq. 7.139)
through Eq. (7.38):*

T2 = pzc2 + mzc4,

s0 that a suitable form for the Hamiltonian is

H=,/p224+m2ct 4+ V. (8.54)

When the system consists of a single particle moving in an electromagnetic
field, the Lagrangian has been given as (cf. Eq. (7.141))

L=-mcJ1-p2+4A-v—qo.

The term in L linear in the velocities does not appear explicitly in the Hamiltonian
(cf. Eq. (8.54)), as we have seen, whereas the first term leads to the appearance of
T in the Hamiltonian. Thus, the Hamiltonian is again the total particle energy:

H=T+g4¢. (8.55)

For this system, the canonical momenta conjugate to the Cartesian coordinates of
the particle are defined by (cf. Eq. (7.142))

pl=mul +th,

s0 that the relation between 7 and p' is given by Eq. (7.168), and the Hamiltonian
has the final form

*In this section we use T for the motion energy (pc) plus the rest energy (mc?) to avoid confusing it
with the total energy T + V
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H = /(0 - g2 + m¥ct + g0 (8.56)

It should be emphasized again that p here is the vector of the canonical momenta
conjugate to the Cartesian position coordinates of the particle. We may also note
that (H — g¢)/c is the zeroth component of the 4-vector

mu® + gA"

(cf. Eqgs. (7.27), (7.38"), and (7.166)). While the Hamiltonian (8.56) is not ex-
pressed in covariant fashion, it does have a definite transformation behavior under
a Lorentz transformation as being, in some Lorentz form, the zeroth component
of a 4-vector.

In a covariant approach to the Hamiltonian formulation, time must be treated in
the same fashion as the space coordinates; that is, time must be taken as one of the
canonical coordinates having an associated conjugate momentum. The founda-
tions of such an extension of the dimensionality of phase space can in fact be con-
structed even in nonrelativistic mechanics, Following the pattern of Section 7.10,
the progress of the system point along its trajectory in phase space can be marked
by some parameter &, and ¢ “released,” so to speak, to serve as an additional co-
ordinate. If derivatives with respect to 8 are denoted by a superscript prime, the
Lagrangian in the (g1, .. ., ga; ¢) configuration space is (cf. Eq. (7.159))

/
Ag. ¢, t, 1) =1L (q, %, t) . (8.57)
The momentum conjugate to ¢ is then
=8 +1 L
== ar'’

If we make explicit use of the connection ¢ = ¢'/¢’, this relation becomes
p=l-d i —ld =R (8.58)

The momentum conjugate to the time “coordinate” is therefore the negative of the
ordinary Hamiltonian.* While the framework of this derivation is completely non-
relativistic, the result is consistent with the identification of the time component of
the 4-vector momentum with E/c. As can be seen from the definition, Eq. (8.2),
if ¢ is multiplied by a constant «, then the conjugate momentum is divided by a.
Hence, the canonical momentum conjugate to ¢t is H/c.

*The remaming momenta are unchanged by the shift from ¢ to 8, as can be seen by evaluaung the

corresponding derivative
aa _ ,aL __t,(BL 1y _
oq, 3g  \agr)TH
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Thus, there seems to be a natural route available for constructing a relativis-
tically covariant Hamiltonian. But the route turns out to be mined with booby
traps. It will be recalled that the covariant Lagrangian used to start the process,
Eq. (7.159) or Eq. (8.57), is homogeneous in first degree in the generalized ve-
locities ¢', and for such a Lagrangian the recipe described above for constructing
the Hamiltonian formulation breaks down irreparably. If L is of type L), the cor-
responding Hamiltonian, call it H.(q, ¢, p, p;), is identically zero!

Fortunately, there does not seem to be any compelling reason why the covari-
ant Lagrangian has to be homogeneous in the first degree, at least for classical
relativistic mechanics. It has already been seen that for a single free particle the
covariant Lagrangian

AGH, u?y = %mu#u“

leads to the correct equations of motion. Of course the four-velocity components,
u#, are still not all independent, but the constraint can be treated as a “weak con-
dition” to be imposed only after all the differentiations have been carried through.
There is now no difficulty in obtaining a Hamiltonian from this Lagrangian, by
the same route as in nonrelativistic mechanics; the result is clearly

i
H, = 2e2” (8.59)
2m

For a single particle 1n an electromagnetic field, a covariant Lagrangian has been
found previously: (cf. Eq. (7.165))*

A, u?) = dmuyul + qut Ay (x), (7.147)
with the canonical momenta (cf. Eq. (7.167)),
Pu=mu, +qA,. (7.149)

In the corresponding Hamiltonian, the term linear in #,, does not appear ex-
plicitly in the Hamiltonian, and the remaining L, part in terms of the canonical
momenta is

pu — qAp) (p* — qA*)
2m )

H. = ( (8.60)
Both Hamiltonians, Eqs. (8.59) and (8.60), are constant, with the same value.
~mc? /2, but to obtain the equations of motion it is the functional dependence on
the 4-vectors of position and momenta that is important. With a system of one
particle, the covariunt Hamiltonian leads to eight first-order equations of motion

#*The Legendre transformation process 1s reverstble: Given a Hamiltoman we can obtain the corre-
sponding Lagrangian (cf Dervation 1} But the difficulties also arise in either direction If a given
Hamiltonian 15 postulated o be homogeneous in first degree in the momenta, then it is not possible o
find an equivalent Lagrangian
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dx* 3H, dp’ __9Hc
dt ~— 8p*' dt = axv’

(8.61)

We know that these equations cannot be all independent. The space parts of
Egs. (8.61) obviously lead to the spatial equations of motion. We should expect
therefore that the remaining two equations tell us nothing new, exactly as in the
Lagrangian case. This can be verified by examining the v = 0 equations in some
particular Lorentz frame. One of them is the constitutive equation for p?:

W = gj L (50— q0)
or

7

1 H
= (T +q¢) = %, (8.62)
C [

a general conclusion that has been noted before. The other can be written as

I ap® _ 18H
JI—p2 dt T ot
or
dH aH
— =,/1-p82—= 8.63
r B (8.63)

As with the covariant Lagrangian formulation, we have the problem of finding
suitable covariant potential terms in the Lagrangian to describe the forces other
than electromagnetic. In multiparticle systems we are confronted in full measure
with the critical difficulties of including interactions other than with fields. In
Hamiltonian language, the “no-interaction” theorem already referred to in Sec-
tion 7.10 says that only in the absence of direct particle interactions can Lorentz
invariant systems be described in terms of the usual position coordinates and cor-
responding canonical momenta. The scope of the relativistic Hamiltonian frame-
work is therefore quite limited and so for the most part we shall confine ourselves
to nonrelativistic mechanics.

DERIVATION OF HAMILTON’S EQUATIONS FROM
A VARIATIONAL PRINCIPLE

Lagrange’s equations have been shown to be the consequence of a variational
principle, namely, the Hamilton’s principle of Section 2.1. Indeed, the variational
method is often the preferable one for deriving Lagrange’s equations, for it is
applicable to types of systems not usually included within the scope of mecharics,
It would be similarly advantageous if a variational principle could be found that
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leads directly to the Hamilton’s equations of motion. Hamilton’s principle,
2
8l = 8/ Ldi =0, (8.64)
h

lends itself to this purpose, but as formulated originally it refers to paths in con-
figuration space. The first modification therefore is that the integral must be eval-
uated over the trajectory of the system point in phase space, and the varied paths
must be in the neighborhood of this phase space trajectory. In the spirit of the
Hamiltonian formulation, both ¢ and p must be treated as independent coordi-
nates of phase space, to be varied independently. To this end the integrand in the
action integral, Eq. (8.64), must be expressed as a function of both g and p, and
their time derivatives, through Eq. (8.15). Equation (8.64) then appears as

)
81 = 8/ (pg, — H(g, p,1))dt =0. (8.65)
h

As a variational principle in phase space, Eq. (8.65) is sometimes referred to as
the modified Hamilton’s principle. Although it will be used most frequently in
connection with transformation theory (see Chapter 9), the main interest in it here
is to show that the principle leads to Hamilton’s canonical equations of motion.
The modified Hamilton’s principle is exactly of the form of the variational
problem in a space of 2n dimensions considered in Section 2.3 (cf. Eq. (2.14)):

)
81 = 3/ flq.q,p.p,t)ydt =0, (8.66)
3]

for which the 2n Euler-Lagrange equations are

d(af\ of .
iy B I C A, =1,..., .
g (%) =0 n (8.67)
d [ af af ;
— (= )-L =0 =1,...,n. 8.68
dr(ap,) 307 7 " ©68

The integrand f as given in Eq. (8.65) contains 4; only through the p,4, term,
and g; only in H. Hence, Eqgs. (8.67) lead to

b+ 22 2o, (8.69)
J aqj

On the other hand, there is no explicit dependence of the integrand in Eq. (8.65)
on p;. Equations (8.68) therefore reduce simply to

9H

—— =0 (8.70)
ap;

4
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Equations (8.69) and (8.70) are exactly Hamilton’s equations of motion. Egs.
(8.18). The Euler-Lagrange equations of the modified Hamilton’s principle are
thus the desired canonical equations of motion.

This derivation of Hamilton’s equations from the variational principle is so
brief as to give the appearance of a sleight-of-hand trick. One wonders whether
something extra has been sneaked in while we were being misdirected by the
magician’s patter. Is the modified Hamilton’s principle equivalent to Hamilton’s
principle, or does it contain some additional physics? The question is largely ir-
relevant; the primary justification for the modified Hamilton’s principle is that it
leads to the canonical equations of motion in phase space. After all, no further
argument was given for the validity of Hamilton's principle than that it corre-
sponded to the Lagrangian equations of motion. So long as Hamiltonian can be
constructed, the Legendre transformation procedure shows that the Lagrangian
and Hamiltonian formulations, and therefore their respective variational princi-
ples, have the same physical content.

One question that can be raised however is whether the derivation puts limita-
tions on the variation of the trajectory that are not present in Hamilton's principle.
The variational principle leading to the Euler-Lagrange equations is formulated,
as in Section 2.2, such that the variations of the independent variables vanish at
the end points. In phase space, that would require g, = 0 and ép; = 0 at the
end points, whereas Hamilton’s principle requires only the vanishing of 8¢4; un-
der the same circumstances. A look at the derivation as spelled out in Section 2.2
will show however that the variation is required to be zero at the end points only
in order to get rid of the integrated terms arising from the variations in the time
derivatives of the independent variables. While the f function in Eq. (8.66) that
corresponds to the modified Hamilton’s principle, Eq. (8.65), is indeed a func-
uon of ¢, there is no explicit appearance of p;. Equations (8.68) and therefore
(8.70) follow from Eq. (8.65) without stipulating the variations of p; at the end
points. The modified Hamilton’s principle, with the integrand L defined in terms
of the Hamiltonian by Eq. (8.19), leads to Hamilton’s equations under the same
variation conditions as those in Hamilton’s principle.*

Nonetheless, there are advantages to requiring that the varied paths in the mod-
ified Hamilton’s principle return to the same end points in both ¢ and p, for we
then have a more generalized condition for Hamilton’s equations of motion. As
with Hamilton’s principle, if there is no variation at the end points we can add a
total time derivative of any arbitrary (twice-differentiable) function F(g, p, t) to
the integrand without affecting the validity of the variational principle. Suppose.
for example. we subtract from the integrand of Eq. (8.65) the quantity

AIt may be objected that ¢ and p cannot be varied independently, because the defining Egs. (8.2) link
p with g and ¢ We could not then have a variation of ¢ (and §) without a commesponding variation of
p. But this entirc objection ts completely at variance with the mtent and the spirit of the Hamiltonan
picture Once the Harmiltonian formulation has been sct up, Eqs (8.2) form no part of it The momenta
have been elevated to the status of independent vanables, on an equal basis with the coordinates and
connccted with them and the tume only through the medium of the equations of motion themselves and
not by any a prion defining relationship
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L3 )
dz (g p1)-

The modified Hamilton’s principle would then read

L]
3/ (—pgr —H(q,p, 1) dt =0. (8.71)
Iy

Here the f integrand of Eq. (8.66) is a function of p, and it is easily verified that
the Euler-Lagrange equations (8.67) and (8.68) with this f again correspond to
Hamilton’s equations of motion, Egs. (8.18). Yet the integrand in Eq. (8.71) is
not the Lagrangian nor can it in general be simply related to the Lagrangian by a
point transformation in configuration space. By restricting the variation of both ¢
and p to be zero at the end points, the modified Hamilton's principle provides an
independent and general way of setting up Hamilton’s equations of motion with-
out a prior Lagrangian formulation. If you will, it does away with the necessity
of a linkage between the Hamiltonian canonical variables and a corresponding
Lagrangian set of generalized coordinates and velocities. This will be very impor-
tant to us in the next chapter where we examine transformations of phase space
variables that preserve the Hamiltonian form of the equations of motion.

The requirement of independent variation of ¢ and p, so essential for the above
derivation, highlights the fundamental difference between the Lagrangian and
Hamiltonian formulations. Neither the coordinates ¢, nor the momenta p, are
to be considered there as the more fundamental set of variables; both are equally
independent. Only by broadening the field of independent variables from n to 2n
quantities are we enabled to obtain equations of motion that are of first order. In
a sense, the names “coordinates” and “momenta” are unfortunate, for they bring
to mind pictures of spatial coordinates and lineat, or at most, angular momenta. A
wider meaning must now be given to the terms. The division into coordinates and
momenta corresponds to no more than a separation of the independent variables
describing the motion into two groups having an almost symmetrical relationship
to each other through Hamilton’s equations.

THE PRINCIPLE OF LEAST ACTION

Another variational principle associated with the Hamiltonian formulation is
known as the principle of least action. It involves a new type of variation, which
we shall call the A-variation, requiring detailed explanation. In the §-variation
process used in the discussion of Hamilton’s principle in Chapter 2, the varied
path in configuration space always terminated at end points representing the
system configuration at the same time #; and #; as the correct path. To obtain
Lagrange’s equations of motion, we also required that the varied path return
to the same end points in configuration space, that is, 8¢,(¢;) = 8¢,(2) = 0.
The A-variation is less constrained; in general, the varied path over which an
integral is evaluated may end at different times than the correct path, and there
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may be a variation in the coordinates at the end points, We can however use the
same parameterization of the varied path as in the §-variation. In the notation
of Section 2.3, a family of possible varied paths is defined by functions (cf. Eq.
(2.15)

q; (tv OC) = (t, 0) -+ on, (I), (8.72)

where « is an infinitesimal parameter that goes to zero for the correct path. Here
the functions 7; do not necessarily have to vanish at the end points, either the orig-
inal or the varied. All that is required is that they be continuous and differentiable,
Figure 8.3 illustrates the correct and varied path for a A-variation in configuration

space.
Let us evaluate the A-variation of the action integral:
) Aty 2]
A f Ldt = f L(w)dt — / L0)dt, (8.73)
n t1+An f

where L (@) means the integral is evaluated along the varied path and L (0) corre-
spondingly refers to the actual path of motion. The variation is cleatly composed
of two parts. One arises from the change in the limits of the integral; to first-order
infinitesimals, this part is simply the integrand on the actual path times the differ-
ence in the limits in time. The second part is caused by the change in the integrand
on the varied path, but now between the same time limits as the original integral.
We may therefore write the A-variation of the action integral as

n

n 2
A/ Ldt = L(t)Atz — L) Ay +f 8L dr. 8.74)
H

n

Here the variation in the second integral can be carried out through a parame-
terization of the varied path, exactly as for Hamilton's principle except that the

4

9

FIGURE 8.3 The A-variation in configuration space.
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variation in ¢, does not vanish at the end points. The end point terms arising in
the integration by parts must be retained, and the integral term on the right appears

as
2 2lalL d (8L aL _ |?
s [*[25 2 (LY ]sgarr .
L y L3g, " ar\3g,)]°" 8 |,

By Lagrange’s equations the quantities in the square brackets vanish, and the A-
variation therefore takes the form

ta
A/ Ldt = (LAt + p,3g)|2 (8.75)
i

In Eq. (8.75), 8¢, refers to the variation in ¢, at the original end point times #; and
12. We would like to express the A-variation in terms of the change Ag, between
q: at the end points of the actual path and g, at the end points of the varied path,
including the change in end point times. It is clear from Fig. 8.3 that these two
variations are connected by the relation*

Ag, = 8q, + g At. (8.76)

Hence, Eq. (8.75) can be rewritten as

f
. 2
A/ Ldt = (LAt — pg At + pAg)]]
|
or
) 2
A[ Ldt = (p;Agq, — H An)|]. 877
H

To obtain the principle of least action, we restrict our further considerations by
three important qualifications:

1. Only systems are considered for which L, and therefore H, are not explicit
functions of time, and in consequence H is conserved.

2. The variation is such that H is conserved on the varied path as well as on
the actual path.

3. The varied paths are further limited by requiring that Ag; vanish at the end
points (but not At).

*Equatton (8 76) may be denived formally from the parameter form. Eq. (8.72), of the vaned path.
Thus, at the upper end point we have

8g,(2) = q,(t2 + Aty, @) = g, (1. 0) = 4, (13 + Ata, 0) — Gy (12, 0) +an, (¢ + Aty),
whuch to first order in small quantiuies o and Az 15
A, (2) = 4i (2) A + 8q, (2),
which is what Eq. (8 76) predicts
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The nature of the resultant variation may be illustrated by noting that the varied
path satisfying these conditions might very well describe the same curve in con-
figuration space as the actual path. The difference will be the speed with which
the system point traverses this curve; that is. the functions g, (¢) will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at all
points on the varied path, the times of the end points must be changed. With these
three qualifications satisfied, the A-variation of the action integral, Eq. (8.77),
reduces to

f
A/ Ldt = —H(An — Ar). (8.78)
h

But under the same conditions, the action integral itseli becomes

f] t2
[rai= [ pdar - me-m),
fl t

the A-variation of which is
7] 73
A/ Ldr= A/ Dig dt — H(A — An). (8.79)
13 n

Comparison of Egs. (8.78) and (8.79) finally gives the principle of least action:*

2
A f pigidt =0. (8.80)
t

By way of caution, note that the modified Hamilton’s principle can be written
in a form with a superficial resemblance to Eq. (8.80). If the trajectory of the sys-
tem point is described by a parameter 9, as in Sections 7.10 and 8.4, the modified
Hamilton’s principle appears as

7]
8 (pig: — H)t'd6 = 0. (8.81)
)

It will be recalled (cf. footnote on p. 351) that the momenta p, do not change
under the shift from ¢ to 6, and that §;¢' = g;. Further, the momentum conjugate
to t is — H. Hence, Eq. (8.81) can be rewritten as

Gy n+1
8 fe | > pigide =0, (8.82)

=1

where ¢ has been denoted by ¢y+1. There should however be no confusion be-
tween Eq. (8.82) and the principle of least action, Equations (8.82) involve phase

“The integral in Eq (8.80) is usually referred to in the older literature as the action, or action inlegral,
and the first edition of this book followed the same practice. It is now customary to refer to the integral
1n Hamtlton’s principle as the action, and we have accepted this usage here. Sometimes the mtegral in
Eq. (8.80) is designated as the abbreviated action
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space of (2n + 2) dimensions, as is indicated by the explicit summation to i =
n + 1, whereas Eq. (8.80) is in the usual configuration space. But most important,
the principle of least action is in terms of a A-variation for constant H, while
Eq. (8.82) employs the §-variation, and H in principle could be a function of time.
Equation (8.82) is nothing more than the modified Hamilton’s principle, and the
absence of a Hamiltonian merely reflects the phenomenon that the Hamiltonian
vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordinates do
not involve the time explicitly, then the kinetic energy is a quadratic function of
the ¢,’s (cf. Eq. (1.71)):

T = S M(9)d - (8.83)

When in addition the potential is not velocity dependent, the canonical momenta
are derived from 7 only, and in consequence

pidr = 2T.

The principle of least action for such systems can therefore be written as
L)
A[ Tdt=0. (8.84)
b1

If, further, there are no external forces on the syste